Light Scattering predictions. G. Grehan L. Méès, S. Saengkaew, S. Meunier-Guttin-Cluzel Muscle, September 2004 1 Rainbow: Far field scattering Fluorescence : Internal field Muscle, September 2004 2 Theories • Airy theory (1838): A scalar solution. Could be applied only close of rainbow • Lorenz-Mie theory (1890-1908): rigorous solution of Maxwell equations. All the scattering effects are merged. Extension to multilayered spheres. • Debye theory (1909): post processing of Lorenz-Mie. The different scattering effects could be separated. • Nussenzveig theory (1969) : is “analytical integration” of Debye series, leading to a generalization of Airy. It is clean to have a larger domain of application than Airy Muscle, September 2004 3 One particle Rainbow Airy, Lorenz-Mie, Debye, Nussenzveig Fluorescence Lorenz-Mie, Debye Internal field Muscle, September 2004 A cloud (section) Global Multiple scattering 4 List of program Internal field and homogeneous sphere: INTGLMT Internal fields+near field : NEARINT 1or 2 beam(s) impinging on a sphere, internal field : 3D2F (3 dimensions) 2D2F (2dimensions) DEBYE internal field : INTDEBYE Far field and homogeneous sphere: DIFFGLMT Far field and multilayered sphere : MCDIFF DEBYE Far field : DIFFDEBYE Far field for pulses : PULSEDIFF Muscle, September 2004 5 Rainbow far the rainbow angle according with Nussenzveig Impact parameter III I II IV V Geometrical rainbow ray impact parameter Scattering angle Geometrical optics angle Muscle, September 2004 6 Comparison of Lorenz-Mie, Debye, Nussenzveig and Airy predictions for one particle Fig 4. Scattering diagram around first rainbow simulated by Lorenz-Mie, Debye, Airy and Nussenzveig theories (d=95.5 µm, m=1.33-0.0i, =500) 1.6 Mie Mie Debye,Debye, p=2 p=2 Nussenzveig Airy 1.4 Normed intensity 1.2 1.0 0.8 0.6 0.4 0.2 0.0 136 138 140 142 144 146 148 150 Scattering angle Muscle, September 2004 7 Rainbow far the rainbow angle according with Nussenzveig 1.2 Nussenzveig, Eqs (19) and (20) Debye, p = 2 Normed Intensity 1.0 0.8 0.6 0.4 0.2 0.0 130 135 140 145 150 155 160 Scattering angle Muscle, September 2004 8 Z is the argument of Airy function Intensity Ratio Debye/Nussenzveig) 1.6 10 micron 20 micron 50 micron 100 micron 1.4 1.2 1/ 3 11 2 / 3 Z R 2 h y = -0.2523x + 1.2807 y = -0.1642x + 1.1722 y = -0.0946x + 1.0982 1 0.6 hm Comparision scattering diagrame between Debye & Nussenzveig without and with coef160° For water (m=1.333) 0.4 0.2 1.2 0 2 4 Normalized scattering Intensity -2 , Y= -0.2523Z+1.2807 Y= -0.1642Z+1.1722 Y= -0.0946Z+1.0982 Y= -0.0593Z+1.0639 D<=15 15>D<=35 35>D<=75 75>D<=150 y = -0.0593x + 1.0639 0.8 6 8 10 1.0Z Debye 10 20 micron Original20 Nus20 micron Nus160° Debye 20 micron micron Original50 Debye Nus20 micron micron Col 1 vs Debye_100 Nus160° 10 micron Nus160° 20 micron Nus160° 50 micron Nus160° 100 micron Original_Nus 10 micron Original Nus20 micron Original_Nus50 micron Original_Nus100 micron .8 .6 .4 .2 0.0 125 130 135 140 145 2004 150 Muscle, September Scattering Angle 155 160 165 9 Comparison of Lorenz-Mie, Debye and Nussenzveig predictions for one particle Fig 6 Comparison scattering diagram between Lorenz-Mie, Debye (p=0+2) and Nussenzveig (p=0+2) Normed scattered intensity 1.6 1.4 Nussenzveig, p = 0 and 2 Debye p = 0 and 2 Lorenz-Mie 1.2 1.0 0.8 0.6 0.4 0.2 0.0 135 140 145 150 155 160 Scattering angle Muscle, September 2004 10 Comparison of Lorenz-Mie, Debye and Nussenzveig predictions for cloud of particle Global rainbow rainbow distribution distributionsimulated simulatedby by Fig 7. Global Lorenz-Mie, Nussenzveig Theory Theory Lorenze-Mie, (mean diameter diameter == 50 50 micron, micron,rms rms==200) 200) (mean 1.2 1.2 Lorenz-Mie Lorenz-Mie NussenzveigOriginal by add coefficient Nussenzveig Nussenzveig Original Normalized Normalized Intensity Intensity 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 125 125 130 130 135 135 140 140 145 145 150 150 155 155 160 160 165 165 Angle Angle Muscle, September 2004 11 Effect of an imagining part of the refractive index nk=0.0005 nk=0.001 nk=0.0025 nk=0.005 1.0 Normed intensity 0.8 0.6 0.4 0.2 maximum Refractive index nk=0.0005 139.60 1.330 nk=0.001 139.63 1.3299 nk=0.025 139.58 1.3298 nk=0.005 /////// /////// 0.0 120 125 130 135 140 145 150 Scattering angle Muscle, September 2004 12 Refractive index at center is nc Refractive index at surface is ns The law is : bx e 1 n nc (ns nc) b e 1 Muscle, September 2004 13 Global rainbow for a particle with gradient. The refracive index at center is equal to 1.33 and at surface to 1.36. Behaviour of the radial rafractive index 1.365 1.2 b = -2 b=2 b = -6 b=6 1.0 1.355 Normed intensity Real part of refractive index 1.360 1.350 1.345 1.340 1.335 0.2 0.4 0.6 0.8 1.0 0.4 0.0 1.325 0.0 0.6 0.2 b = -2 b=2 b = -6 b=6 1.330 0.8 1.2 120 130 140 150 160 Scattering angle Normad radius Muscle, September 2004 14 b=2 1.3259 b=-2 1.3459 b=6 1.3198 b=-6 1.3578 Muscle, September 2004 15 2D model Two steps: •Excitation by the laser •Collection in a given solid angle of the fluorescence Muscle, September 2004 16 2D model : Excitation map Internal intensity (in log-scale) created by a beam with a beam waist diameter equal to 20 µm, and a wavelength equal to 0.6 µm. The particle is a water droplet with a diameter equal to 100 µm and a complex refractive index equal to 1.33 – 0.0 i. The parameter is the impact location of the beam: (a) = 50 µm (on the edge of the droplet), (b) = 30 µm and (c) = 0 µm (on the symmetry axis of the droplet). Muscle, September 2004 17 2D model : Detection map Muscle, September 2004 18 2D model : Answer Map of fluorescence emission. The particle is a water droplet of 100 µm on which impinges a laser beam with a diameter equal to 20 µm, and for an impact location equal to 50 µm (Fig. 2a). The parameter is the location of the collecting lens: (a) 0°, (b) 90° and (c) 180°. Muscle, September 2004 19 2D model 60 µm 50 µm 40 µm 30 µm 20 µm 10 µm 0 µm -10 µm -20 µm -30 µm -40 µm -50 µm -60 µm Logarithm scale 2 20 1 15 10 2 10 0.1 0.01 3 0 20 15 10 5 1 1 5 3 60 µm 50 µm 40 µm 30 µm 20 µm 10 µm 0 µm -10 µm -20 µm -30 µm -40 µm -50 µm -60 µm Logarithm scale 0 0 0 5 10 15 10 20 1 0.1 0.01 0.01 0.1 1 10 0.01 5 6 6 0.1 10 1 15 4 4 10 20 5 5 Diagram of fluorescence for a water droplet of 100 µm. The parameter is the impact location which runs from 60 µm to –60 µm by steps of 10 µm. The left figure is in linear scale while rigth figure is in logarithm scale. Muscle, September 2004 20 3D model : Excitation map Muscle, September 2004 21
© Copyright 2026 Paperzz