High-accuracy radiation thermometry at the HighPhysikalisch--Technische Bundesanstalt (PTB) Physikalisch D. R. Taubert, Taubert, K. Anhalt, Anhalt, B. Gutschwager, Gutschwager, C. Monte, J. Hartmann, J. Hollandt Physikalisch--Technische Bundesanstalt Physikalisch Filterradiometer Physikalisch--Technische Bundesanstalt Physikalisch Overview I t d ti Introduction Low-- / midLow mid-temperature calibration facility High--temperature calibration facility High High--temperature eutectic fixed High fixed--points Summary Physikalisch-Technische Bundesanstalt 2 Introduction Temperature governs most production processes in industry crucial for optimized productivity and quality assurance frequent measurement technique – radiation thermometry annuall growth th rate: t more than th 10% 600,000 radiation thermometers sold / year 15 000 th 15,000 thermography h systems t sold ld / year market volume: > 1 billion € Physikalisch-Technische Bundesanstalt 3 Introduction Increased demand of calibrations in the field of radiation thermometry PTB operates two calibration facilities: Low-/ midLowmid-temperature calibration facility; temperature range: -60 °C to 962 °C High temperature calibration facility; temperature range: 900 °C to 3000 °C Realization and dissemination of p radiation temperatures Physikalisch-Technische Bundesanstalt 4 Low-- / mid Low mid--temperature calibration facility schematic view Sodium (Na) Caesium (Cs) Water (H2O) Ammonia (NH3) Heat-pipe Heat-pipe p p BB p p BB Heat-pipe Heat-pipe p p BB p p BB -60 °C to 50 °C 50 °C to 270 °C 270 °C to 650 °C 500 °C to 962 °C ε = 0.9996 ε = 0.9996 ε = 0.9999 ε = 0.9998 SPRT SPRT SPRT SPRT y x Thermal camera or radiation thermometer on translation stage 3000 mm 600 mm Physikalisch-Technische Bundesanstalt 5 Low-- / mid Low mid--temperature calibration facility cross--section of sodium / cesium heat cross heat--pipe blackbody thermocouple or Pt 100 bifilar heating water-cooled housing 200 200mm 368 mm ø 41 mm ø 92 mm SPRT 950 mm heat-pipe ceramic insulation heater temporal stability: 0.1 K heat--pipe temperature stability: heat 10 mK Physikalisch-Technische Bundesanstalt 6 Low-- / mid Low mid--temperature calibration facility cross--section of H2O / NH3 heat cross heat--pipe blackbody cooling element housing N2 purging aperture Ø 60 mm 525 mm PRT heat-pipe heating elements heater temporal stability: 0.1 K heat--pipe temperature stability: heat 10 mK Physikalisch-Technische Bundesanstalt 7 Low-- / mid Low mid--temperature calibration facility PTB heat heat--pipe blackbodies Blackbody Temperature range / °C Cavity diameter / mm Cavity Emissivity NH3-BB BB -60 60 to 50 60 0 99990 ± 0.00006 0.99990 0 00006 H20-BB 50 to 270 60 0.99980 ± 0.00015 Cs-BB 270 to 650 41 0.99960 ± 0.00017 N BB Na-BB 500 00 to 962 41 0 99960 ± 0.00017 0.99960 0 0001 Physikalisch-Technische Bundesanstalt 8 Low-- / mid Low mid--temperature calibration facility z y x Physikalisch-Technische Bundesanstalt 9 Low-- / mid Low mid--temperature calibration facility radiation temperature standard uncertainties (k= (k=1) 1) Radiation temperature / °C Uncertainty of radiation temperature / °C 1.6 µm -60 0 50 100 200 300 400 600 800 960 0.035 0.035 0.035 0.08 0.1 0.02 0.03 0.06 0.08 3.9 µm 0.1 0.035 0.035 0.035 0.08 0.10 0.03 0.05 0.07 0.10 10 µm 0.035 0.035 0.035 0.035 0.08 0.10 0.05 0.08 0.11 0.14 Physikalisch-Technische Bundesanstalt 10 High temperature scale Realization and dissemination of radiation temperature scale above the AgAg-FP (961.78 °C): Gold fixedfixed-point (Au(Au-FP) blackbody radiator: 1064.18 °C High temperature blackbody (HTBB): variable temperature, 900 °C to 3000 °C High quality transfer standard radiation thermometers (LP3) Tungsten strip lamps operated as radiation temperature standards Physikalisch-Technische Bundesanstalt 11 Gold fixedfixed-point blackbody hit crucible ibl graphite water cooled housing di heat-pipe h i sodium argon gas inlet heating zone fixed point metal (Au) alumina tube insulation heat--pipe based design heat cavity aperture diameter: 3 mm ε = 0.99999 large fixedfixed-point material amount (~ 3 kg Au) excellent performance Physikalisch-Technische Bundesanstalt 12 Gold fixedfixed-point blackbody dete ector signa al (normallized) freezing plateau 1.007 1.006 1.005 1.004 1.003 100 mK 1.002 950 1000 1050 1100 time / min freezing plateau duration: ~ 90 minutes temperature stability: ~ 10 mK but: limitation to one temperature: 1337.33 K Physikalisch-Technische Bundesanstalt ! 13 High Temperature Blackbody (HTBB 3200pg) PTB primary standard Radiation temperature above the Ag b th AgA -FP Spectral radiance directly Joule Joule--heated cavity (DC, 700 A max.) operating temperature range: 1000 K to 3200 K temporal stability: better than 250 mK large aperture diameter : 20 mm ε = 0.999 0 999 ± 0.001 0 001 Physikalisch-Technische Bundesanstalt 14 Linear pyrometer LP3 schematic view thermostat photodiode T f radiation di ti th t for: f Transfer thermometer filter wheels target field stop International scale comparisons Internal highhigh-temperature scale dissemination Main characteristics: λeff = 650 nm (950 nm) Temperature range: 800 °C to 2900 °C adjusting telescope aperture stop FOV: 0.8 mm Ø at 690 mm Good stability and linearity Small SSE c2 ⎛ ⎞ Iphoto (T ) = C ⋅ exp⎜ − ⎝ A ⋅T + B ⎠ Standard uncertainty: 0.3 °C at 800 °C t to 1.0 °C at 2900 °C Physikalisch-Technische Bundesanstalt 15 High temperature scale – realization and dissemination Radiation temperature CALIBRATION ARTEFACT COMPARISON / DISSEMINATION Radiation temperature and spectral radiance PRIMARY STANDARD HIGH TEMPERATURE BLACKBODY (HTBB, 1000 K to 3200 K) T90 (ITS-90) Temperature T t T90 PRIMARY STANDARD GOLD-FIXED-POINT BLACKBODY (Au BB) T (absolute filter radiometry) Detector Φ PRIMARY STANDARD CRYOGENIC RADIOMETER Physikalisch-Technische Bundesanstalt 16 Spectral radiance comparator facility HeNe MCT InSb InAs Si InGaAs Detector translation unit PMT Step 1: Determination T90 (HTBB) 800 mm PMT 1800 mm Grating double monochromator 0.25 m, additive mode Linear Pyrometer (LP3) Chopper/filter wheel Imaging mirror f = 600 mm F/#: 8..20 Ambient Tungsten temperature strip lamp blackbody Goldfixed-point blackbody (Au-BB) 1500 m mm Translation range: 3000 mm alternative Step Step 1:2: artefact Determination Tcalibration (HTBB) Calibrated filter radiometer for absolute thermometry CCD camera High temperature blackbody (HTBB, 960 °C to 3000 °C) Physikalisch-Technische Bundesanstalt 17 Spectral Radiance Comparator Facility Physikalisch-Technische Bundesanstalt 18 ITS--90 and high ITS high--temperature fixed points Interpolation Extrapolation Interpolation Pt- Widerstandsthermometer resistance thermometer 0,01 °C Zn Al Au Fe-C Ag Cu Co-C Pd-C 660,323 °C 1084,13 1153 °C 1492 °C C 419 527 °C 419,527 C 961 961,78 78 °C C Pt-C Ru-C 1738 °C 1953 °C C Ir-C Re-C TiC-C ZrC-C 2290 °C 2761 °C 2474 °C C 2883 °C C 1.0 Uncetainty ITS-90 (k=2) 0.8 U/K Ga Sn H2O In Strahlungsthermometer Radiation thermometer Radiation thermometer Uncertainty ITS-90 and Radiation thermometer U=0.2% U 0.2% Additional f ixed points 0.6 0.4 0.2 0.0 1000 1500 2000 2500 3000 t90 / °C Physikalisch-Technische Bundesanstalt 19 Eutectic fixedfixed-point blackbodies C Metal-CarbonMetalCarbon-Fixed points in graphite crucibles M crucible material is part of the fixed point material no contamination through crucible material higher stability better reproducibility F C Fe-C Co-C Pd-C Pd C 1153 °C 1492 °C Pt-C Ru-C R C 1738 °C 1953 19 3 °C Ir-C R Re-C C TiC-C Z ZrC-C CC 2290 °C 2761 °C 2474 24 4 °C 2883 °C Physikalisch-Technische Bundesanstalt 20 Design / construction of eutectic fixedfixed-point blackbodies Both fixedfixed-point cells d i designs have: h the same outer diameter the same length/diameter g ratio of the cavity a calculated emissivity 0.9997 several layers of C/C sheet insulation 3 mm Ø cavity: radiation thermometry 8 mm Ø cavity: radiometry, photometry Anhalt et al. ((2008)) Large- and small- aperture fixed-point cells of Cu, Pt-C, and Re-C International Journal of Thermophysics, 29(3), pp. 969 - 983. Physikalisch-Technische Bundesanstalt 21 Eutectic fixedfixed-point cell relative comparison BNM INM BNM-INM 2 identical furnaces NMIJ 0.4 Co-C Pd-C NPL Pt-C Ru-C 2 radiation ad a o thermometer e o e e LP3 3 15 fixed point cells Re-C 0.3 (NMIJ, BNMBNM-INM, NPL NPL)) NMIJ 0.1 NPL 0 Pt-C -0.1 -0.2 0.2 1.50 INM -0.3 NMIJ NPL INM 1.00 -0.4 1200 1400 1600 1800 2000 2200 2400 t / °C reproducibility single cell: 0.50 2600 ∆T / K T - Tmean / K 02 0.2 < 50 mK difference Tmelt Co-C, Pt-C, Re-C: ~ 200 mK 0.00 -0.50 -1.00 -1.50 difference Tmelt Pd-C, Ru-C: ~ 400 mK 0 50 100 150 200 250 300 t /s Physikalisch-Technische Bundesanstalt 22 Measurement uncertainty k=2, 0.6 K – 1.2 K 2510 2790 2950 2450 2740 2850 0 Temp perature / °C Reproducibility 0.2 K – 0.5 K t / °C Thermodynamic temperature determination Re-C 30 0 TiC-C 0 34 ZrC-C 2884 2478 2761 2477 2760 2476 2759 2475 2758 2474 2757 2473 2756 2878 2472 2755 2877 4 Hartmann, J., Anhalt, K., et al. (2005). Thermodynamic temperature measurements off the melting curves off Re-C, C TiC-C and ZrC-C eutectic irradiance mode fixed point cells. In D. Zvizdic (ed.). 9th Int. Symp. on Temp. and Thermal Measurements (pp. 189 - 194). 7 10 55 2883 2882 2881 2880 2879 5 9 13 3 7 11 15 time / min Physikalisch-Technische Bundesanstalt 23 Thermodynamic temperature determination • radiance comparison method 1. HTBB temperature ~ Tmelt 2. Measurement of thermodynamic temperature of HTBB with FR Nagano S furnace Tmelt melt c2 exp( − 1) ( , ) Lλ s λ Tmelt λTHTBB = Lλ s (λ , THTBB ) exp( c2 − 1) λTmelt HTBB 3200pg T ~ Tmeltlt FR Physikalisch-Technische Bundesanstalt 24 Thermodynamic temperature determination • radiance comparison method 1. HTBB temperature ~ Tmelt 2. Measurement of thermodynamic temperature of HTBB with FR 3. Spectral radiance measurement of the HTBB with the LP3 Nagano S furnace Tmelt melt c2 exp( − 1) ( , ) Lλ s λ Tmelt λTHTBB = c Lλ s (λ , THTBB ) exp( exp( 2 − 1) λTmelt HTBB 3200pg T ~ Tmeltlt LP3 Physikalisch-Technische Bundesanstalt 25 Thermodynamic temperature determination • radiance comparison method 1. HTBB temperature ~ Tmelt 2. Measurement of thermodynamic temperature of HTBB with FR 3. Spectral radiance measurement of the HTBB with the LP3 4. Spectral radiance measurement of the eutectic cell in the Nagano furnace with the LP3 Nagano S furnace Tmelt melt c2 exp( − 1) Lλ s (λ , Tmelt ) λTHTBB = c Lλ s (λ , THTBB ) exp( exp( 2 − 1) λTmelt HTBB 3200pg T ~ Tmeltlt LP3 Physikalisch-Technische Bundesanstalt 26 Thermodynamic temperature determination / relative comparison 0.5 T - T_averag ge / K 04 0.4 C C Co-C Pd C Pd-C Pt Pt-C C R C Ru-C Thermod Thermod. 0.3 NMIJ 0.2 NPL 01 0.1 INM 0 Relative -0.1 NMIJ 02 -0.2 NPL -0.3 INM -0.4 -0.5 1324 °C 1491 °C 1738 °C 1954 °C Anhalt et al. Thermodynamic temperature determinations of Co-C, Pd-C, Pt-C and Ru-C eutectic fixed-point cells Metrologia, 43, 2006, pp. S78-S83 Physikalisch-Technische Bundesanstalt 27 Absolute temperature comparison NIST – PTB using NPL cells 0.75 T - T aver.(PTB,NISTT) / K 0.50 0.25 PTB 2004 0.00 NIST 2003 -0.25 0 25 -0.50 -0.75 1500 Co-C 1600 Pd-C 1700 1800 Pt-C 1900 2000 Ru-C 2100 2200 2300 T /K Co-C Pd-C Pt-C Ru-C PTB 1597.16 1765.02 2011.67 2227.12 U, k k=2 2 0.22 0.27 0.32 0.41 NIST 1597.43 1764.95 2011.21 2226.74 U, k k=2 2 0.17 0.21 0.27 0.34 PTB NIST PTB-NIST -0.27 0.12 0.53 0.48 U(PTB/NIST), k k=2 2 0.28 0.34 0.42 0.52 Physikalisch-Technische Bundesanstalt 28 Summary PTB instrumentation and experimental techniques for the realization and dissemination of the temperature scale with optical methods Low-/ midLowmid-temperature calibration facility: -60 °C to 962 °C High temperature calibration facility: 962 °C to 3000 °C Standard uncertainty of the disseminated radiation temperature: 40 mK at - 60 °C 10 mK at the AuAu-FP (1064.18 °C) 1000 mK at 3000 °C Achievable standard uncertainties for radiation thermometer calibrations: 60 mK at - 60 °C 30 mK at 400 °C 1000 mK at 3000 °C PTB meets all industrial requirements in the range from -60 °C to 3000 °C Physikalisch-Technische Bundesanstalt 29 Emissivity determination at the PTB in the temperature range from 0 °C to 600 °C C. C Monte Monte, M. M Becker, Becker B B. Gutschwager Gutschwager, E E. Kosubek and J J. Hollandt Physikalisch--Technische Bundesanstalt Physikalisch Physikalisch--Technische Bundesanstalt Physikalisch Outline Motivation for an accurate emissivity determination Experimental setup for emissivity measurement in air Uncertainty New experimental setup for emissivity measurement under vacuum Summary Physikalisch-Technische Bundesanstalt 31 Motivation λ ⋅ T 2 ∆ε ∆T ≈ ⋅ c2 ε 3000 K @ 1 µm: ∆T = 30 K 300 K @ 10 µm: ∆T = 3 K Physikalisch-Technische Bundesanstalt 32 Motivation Variability of INCONEL 600 samples Preparatory work for the spectral emissivity pilot study of CCTCCT-WG9 Identical sample preparation, two different sample manufacturers 16 % variation different manufacturers O l individual Only i di id l emissivity i i it determination d t i ti allows ll an accurate t temperature t t measurementt Physikalisch-Technische Bundesanstalt 33 Spectral emissivity measurement in air - setup Measurement principle: Ratio of the spectral radiance of the sample / spectral radiance of the reference blackbody Radiance of the detector / surrounding Reflectivity of the sample Physikalisch-Technische Bundesanstalt 34 Spectral emissivity measurement ranges (air) Temperature range: 80 °C to 430 °C Wavelength range: 4 µm to 40 µm (2500 cm-1 to 250 cm-1) Direction of observation: 0° to 70° 70° Size of measured area: circular 10 mm diameter circular, Acceptance angle of the optics: +/ +/-- 3°, NA 0.05 Homogeneity (camera): circular measurement area area, 20 mm diameter The directional total emissivity and the hemispherical emissivity are calculated from the directional spectral emissivity Physikalisch-Technische Bundesanstalt 35 Spectral emissivity measurement in air - example wavelength / µm re elative deviation directional spectral emissivity homogeneity at 250 °C and 4 µm angle Measurementt area M for the directional spectral emissivity wavenumber / cm-1 High-emissivity coating at 250 °C HighApplication: reference coating for radiation thermometry up to 800 °C Physikalisch-Technische Bundesanstalt 36 Uncertainty Emissivity E i i it off a SiCSiC-sample l att 150 °C wavenumber / cm-1 standard uncertainty standarrd uncertainty y directional spectral emis ssivity emissivity +/- standard uncertainty wavelength g / µm µ Physikalisch-Technische Bundesanstalt 37 Emissivity measurement under vacuum - setup radiation sources chamber cooled beamline FT-spectrometer detector chamber vacuum-IR-transfer-radiation thermometer (VIRST) Physikalisch-Technische Bundesanstalt 38 Emissivity measurement under vacuum - setup reference blackbodies: VLTBB and VMTBB b l bolometer FT--spectrometer FT sample holder off--axis ellipsoid off No atmospheric interference No convection → accurate determination of the sample surface temperature Temperature range: 0 °C to 600 °C g range: g Wavelength 1µ µm to 1600 µ µm ((10000 cm-1 to 6 cm-1) Physikalisch-Technische Bundesanstalt 39 Emissivity measurement under vacuum - setup LN2- / water cooled enclosure h ti heating plate sample e > 0.98 rotation stage vacuum sample holder 0 °C to 600 °C Physikalisch-Technische Bundesanstalt 40 Emissivity measurement under vacuum VMTBB (150 °C to 430 °C) VLTBB (-173 °C to 177 °C) Measurement principle: measurement of the sample against two blackbodies at two different temperatures Advantage of the method: sample holder (0 °C to 600 °C) the background radiation, the warm components of the FTFT-spectrometer and the spectral responsivity of the detection system are cancelled Physikalisch-Technische Bundesanstalt 41 Summary Determination of the directional spectral emissivity in air in the temperature range from 80 °C to 430 °C (4 µm to 40 µm) Determination of the directional spectral emissivity under vacuum in the temperature range from 0 °C to 600 °C (1µm to 1600 µm) Determination of the total and hemispherical emissivity St d d uncertainty Standard t i t for f the th emissivity i i it 1% for f samples l with ith an emissivity > 0.3 and a sample temperature starting from 150 °C Physikalisch-Technische Bundesanstalt 42 Muster Physikalisch-Technische Bundesanstalt 43
© Copyright 2025 Paperzz