Checks of Merlin scattering routine in SixTrack for LHC Ye Zou S. Redaelli, R. Bruce, A. Mereghetti, K. N. Sjoebaek, J. Molson, H. Garcia, M. Fiascaris Outline Configuration Comparison among three versions of SixTrack Single-jaw tests Conclusions LHC 2016 configuration Energy = 6.5 TeV, 𝜷∗ = 40 cm, 𝝌𝐢𝐧𝐠 = 370 μrad (total) S. Redaelli Collimator Setting collision (σ) TCP IR7 5.5 TCSG IR7 7.5 TCLA IR7 11.0 TCP IR3 15.0 TCSG IR3 18.0 TCLA IR3 20.0 TCSG IR6 8.3 TCDQ IR6 8.3 TCT IR1/5 9.0 TCT IR2 37.0 TCT IR8 15.0 TCL 4/5/6, no Totem 15 / 15 / out TCL 4/5/6, with Totem 15 / 35 / 20 Initial conditions Optics: LHC 2016 configuration(𝜷∗ = 40 cm) Versions of SixTrack to be compared: Standard-SixTrack MSM-SixTrack (added by J. Molson) Fluka-SixTrack (data supplied by A. Mereghetti ) 4 sceneries: B1_H, B1_V, B2_H, B2_V 10 M particles 200 turns 0.1 m bin size for beam loss pattern No energy spread Initial beam distribution: Simulated plane: 5.5 ~ 5.7 σ, the other plane: 0~ 3 σ B1_H Zoom in IR7 Standard-SixTrack DS1 MSM-SixTrack DS2 Zoom in IR7 DS3 B1_V Zoom in IR7 Standard-SixTrack MSM-SixTrack Zoom in IR7 B2_H Zoom in IR7 Standard-SixTrack DS3 MSM-SixTrack DS2 DS1 Zoom in IR7 B2_V Zoom in IR7 Standard-SixTrack MSM-SixTrack Zoom in IR7 0.1 0.01 0.001 1E-4 1E-5 1E-6 1 Standard-SixTrack MSM-SixTrack Fluka-SixTrack 0.1 0.01 0.001 1E-4 1E-5 1E-6 1E-7 The ratio of beam losses to normal SixTrack Standard-SixTrack MSM-SixTrack Fluka-SixTrack TC TP H. 4 TC TDI L2.B TP .4L 1 V.4 2.B TC TCL L2.B1 LIB IA. 1 T .6R 4R2 TC CP.6 2.B 1 TC SG.5L3.B TC SG L3 1 . . TCSG.A4R3 B1 S 5 .B TC G.B R3. 1 5 B TCLA.A R3. 1 LA 5R B1 TC .B5 3.B R 1 L A TC .6 3.B TC LA. R3. 1 T 7 B TC PH R3.B1 . TP 4L 1 5 TC V.4L .B1 5 TC TCL.4R .B1 5 TCDQA L.5R .B1 5 TC DQA.A4R .B1 DQ .B4 6.B TC A.C R6. 1 SP 4R B1 TC .A4 6.B R 1 TCP.D6 6.B P L 1 T .C 7.B TC CP.B6L7. 1 B S 6 TC G.A L7. 1 B TCSG.B6L7. 1 B TC SG.A5L7. 1 B S TC G.D5L7. 1 B TCSG.B4L7. 1 TC SG.A4L7 B1 . TCSG.A 4L7 B1 . TC SG.B4R7 B1 .B S TC G.D5R7 1 SG 5R .B1 TC .E5 7.B TC SG. R7. 1 6 B TCLA.A R7. 1 6 B TC LA.B R7. 1 B 6 L A TC .C R7. 1 L 6 B TC A.D R7. 1 L 6 B TC A.A R7. 1 T 7 B TC PH R7.B1 . TC TPV 4L8. 1 B . TCTPH 4L8.B1 TP .4L 1 V.4 1.B L1 1 .B1 1 The ratio of beam losses to Standard-SixTrack TC L. TCTCL 4R1 TP .5R .B1 H. 1.B TC TDI 4L2. 1 TP .4L B1 V.4 2.B TC TCL L2.B1 LI IA 1 TCB.6R.4R2 TC P.6 2.B T SG L3 1 TCCSG .5L3.B1 TCSG.A.4R3.B1 . S TC G.B5R3 B1 . TCLA.A5R3 B1 L 5 .B TCA.B5R3.B1 T LA. R3. 1 TCCLA 6R3 B1 . . TCTPH 7R3.B1 TP .4L B1 TC V.4L5.B1 5 L TC TC .4R .B1 TCDQA L.5R5.B1 TC DQA.A4R5.B1 DQ .B 6 TC A.C4R6.B1 S 4 .B TCP.A4R6.B1 TCP.D6R6.B1 TCP.C6L7.B1 TC P.B L7 1 . TCSG.A6L7 B1 . TCSG.B6L7 B1 TC SG.A5L7.B1 . TCSG.D5L7 B1 . TCSG.B4L7 B1 TC SG. 4L7.B1 A TCSG.A 4L7.B1 TC SG.B4R7.B1 TCSG.D5R7.B1 S 5 .B TCG.E R7. 1 TC SG 5R7 B1 . . TCLA.A6R7 B1 . TC LA.B6R7 B1 . TCLA.C6R7 B1 . TCLA.D6R7 B1 . TCLA.A6R7 B1 . TCTPH 7R7.B1 TC TPV.4L8 B1 . . TCTPH 4L8.B1 TP .4L B1 V.4 1.B L1 1 .B1 Beam losses rate on collimators 1E-7 10 TC TP H. 4 TC TDI L2.B TP .4L 1 V.4 2.B TC TCL L2.B1 LIB IA. 1 T .6R 4R2 TC CP.6 2.B 1 TC SG.5L3.B TC SG L3 1 . . TCSG.A4R3 B1 S 5 .B TC G.B R3. 1 5 B TCLA.A R3. 1 LA 5R B1 TC .B5 3.B R 1 L A TC .6 3.B TC LA. R3. 1 T 7 B TC PH R3.B1 . TP 4L 1 5 TC V.4L .B1 5 TC TCL.4R .B1 5 TCDQA L.5R .B1 5 TC DQA.A4R .B1 DQ .B4 6.B TC A.C R6. 1 SP 4R B1 TC .A4 6.B R 1 TCP.D6 6.B P L 1 T .C 7.B TC CP.B6L7. 1 B S 6 TC G.A L7. 1 B TCSG.B6L7. 1 B TC SG.A5L7. 1 B S TC G.D5L7. 1 B TCSG.B4L7. 1 TC SG.A4L7 B1 . TCSG.A 4L7 B1 . TC SG.B4R7 B1 .B S TC G.D5R7 1 SG 5R .B1 TC .E5 7.B TC SG. R7. 1 6 B TCLA.A R7. 1 6 B TC LA.B R7. 1 B 6 L A TC .C R7. 1 L 6 B TC A.D R7. 1 L 6 B TC A.A R7. 1 T 7 B TC PH R7.B1 . TC TPV 4L8. 1 B . TCTPH 4L8.B1 TP .4L 1 V.4 1.B L1 1 .B1 TC L. TCTCL.4R1. TP 5R B1 H. 1.B TC TDI 4L2. 1 TP .4L B1 V.4 2.B TC TCL L2.B1 LIB IA. 1 TC .6R 4R2 P TC .6 2.B T SG L3 1 TCCSG .5L3.B1 TCSG.A.4R3.B1 . S TC G.B5R3.B1 TCLA.A5R3.B1 LA 5R B1 TC .B5 3.B T L A. R 3 . 1 TCCLA.6R3.B1 B TCTPH 7R3. 1 TP .4L B1 TC V.4L5.B1 TC TCL.4R5.B1 TCDQA L.5R5.B1 TC DQA.A4R5.B1 DQ .B 6. TC A.C4R6 B1 S 4 .B TCP.A4R6.B1 TCP.D6R6.B1 TCP.C6L7.B1 TC P.B L7 1 . TCSG.A6L7 B1 . TCSG.B6L7 B1 . TC SG.A5L7 B1 . TCSG.D5L7 B1 . TCSG.B4L7 B1 TC SG. 4L7.B1 A TCSG.A 4L7.B1 S 4 TC G.B R7.B1 TCSG.D5R7.B1 S 5 .B TCG.E R7. 1 TC SG 5R7.B1 . TCLA.A6R7 B1 . TC LA.B6R7 B1 . TCLA.C6R7 B1 . TCLA.D6R7.B1 TCLA.A6R7.B1 B TCTPH 7R7. 1 . TC TPV 4L8.B1 . B TCTPH 4L8. 1 TP .4L B1 V.4 1.B L1 1 .B1 B1_V Beam losses rate on collimators (1/m) B1_H Beam losses rate on collimators (1/m) Beam losses distribution on collimators with three versions of SixTrack 10 The ratio of MSM-SixTrack and Fluka-SixTrack to Standard SixTrack 10 The ratio of MSM-SixTrack to Standard-SixTrack The ratio of Fluka-SixTrack to Standard-SixTrack 1 0.1 0.01 10 The ratio of MSM-SixTrack to Standard-SixTrack The ratio of Fluka-SixTrack to Standard-SixTrack 1 0.1 0.01 0.1 0.01 0.001 1E-4 1E-5 1E-6 1E-7 10 1 Standard-SixTrack MSM-SixTrack Fluka-SixTrack 0.1 0.01 0.001 1E-4 1E-5 1E-6 1E-7 TC TC TPV T .4 TC PH. R1. 4 B TC TPV R1. 2 TP .4R B2 TC H.4R2.B2 LA 2. TC .7 B TC LA. L3.B2 L 6 TC A.B L3.B2 TC LA.A5L3. 2 B S TC G.B5L3. 2 SG 5L B2 TC .A5 3.B 2 TC SG.4L3.B SG L3 2 TC .5R .B2 P 3 TC .6R3.B2 L. .B TC TCL 5L5. 2 B . TC TPV 4L5. 2 TP .4R B2 T H 5 TC CSP .4R .B2 DQ .A4 5.B TC A L6 2 D . TC QA C4L6.B2 DQ .B4 .B TC A.A L6.B2 4 TC LA.A L6.B2 L 7 TC A.D L7.B2 LA 6L 2 TC .C 7.B L 6 TC A.B L7.B2 L 6L 2 TC A.A 7.B TC SG 6L7. 2 B . TC SG.E6L7. 2 SG 5L B2 TC .D 7. B S TC G.B5L7. 2 B TC SG.A5L7. 2 B S TC G.A 4L7. 2 B S 4 TC G.B R7. 2 B S TC G.D4R7. 2 SG 4R B2 TC .A 7. B S TC G.B5R7. 2 SG 5R B2 TC .A6 7.B 2 R P TC .B6 7.B P R 2 TC .C6 7.B P R 2 TC .D6 7.B LIB R7 2 . .B TC 6L8. 2 L B TC TDI IA.4 2 TP .4R L8 H. 8.B TC 4R 2 L.6 8.B L1 2 .B2 1 Standard-SixTrack MSM-SixTrack Fluka-SixTrack The ratio of beam losses to Standard-SixTrack Beam losses rate on collimators The ratio of beam losses to Standard-SixTrack TC TC TPV . TCTPH 4R1. . TC TPV 4R1 B2 TP .4R .B2 TC H.4 2.B R 2 T LA. 2.B TCCLA 7L3. 2 . B TCLA.B6L3. 2 B 5 L TC A.A L3. 2 B TCSG.B5L3. 2 SG 5L B2 3 TC .A5 .B TC SG. L3.B2 SG 4L 2 TC .5R3.B2 P 3 TC .6R .B2 L. 3.B TC TCL 5L5. 2 T TC PV .4L5 B2 TP .4R .B2 T H 5 TC CSP .4R .B2 5 D TC QA .A4L .B2 . 6 TCDQA C4L .B2 DQ .B4 6.B TC A.A L6. 2 B TC LA.A4L6. 2 B TCLA.D7L7. 2 B TCLA.C6L7. 2 B TCLA.B6L7. 2 L 6 B2 T A.A L7.B TCCSG 6L7. 2 TC SG.E.6L7 B2 .B TCSG.D5L7. 2 B TCSG.B5L7. 2 TC SG. 5L7 B2 A . TCSG.A 4L7 B2 . TC SG.B4R7 B2 . TCSG.D4R7 B2 . TCSG.A4R7 B2 . TCSG.B5R7 B2 SG 5 .B TC .A6R7.B2 R P TC .B6 7.B2 TCP.C6R7.B2 R TCP.D6 7.B2 LIB R7 2 . TC.6L8 B2 . L T I TC DI A.4B2 TP .4R L8 H. 8.B TC 4R 2 8 TCL.6L .B2 1 TCL.5L .B2 L.4 1.B L1 2 .B2 10 TC TC TPV . TCTPH 4R1. . TC TPV 4R1 B2 TP .4R .B2 TC H.4 2.B R 2 T LA. 2.B TCCLA 7L3. 2 . B TCLA.B6L3. 2 B TC LA.A5L3. 2 B TCSG.B5L3. 2 SG 5L B2 TC .A5 3.B TC SG. L3.B2 SG 4L 2 TC .5R3.B2 P 3 TC .6R .B2 L. 3.B TC TCL 5L5. 2 TC TPV .4L5 B2 TP .4R .B2 T H 5 TC CSP .4R .B2 5 D TC QA .A4L .B2 . 6 TCDQA C4L .B2 DQ .B4 6.B L A TC .A 6. 2 B TC LA.A4L6. 2 B TCLA.D7L7. 2 B TCLA.C6L7. 2 B2 6 L L A TC .B 7. L 6 B2 T A.A L7.B TCCSG 6L7. 2 TC SG.E.6L7 B2 .B TCSG.D5L7. 2 B TCSG.B5L7. 2 TC SG. 5L7 B2 A4 .B S TC G.A L7 2 . TC SG.B4R7 B2 . TCSG.D4R7 B2 . TCSG.A4R7 B2 . S 5 TC G.B R7 B2 SG 5 .B TC .A6R7.B2 TC P.B6R7.B2 TCP.C6R7.B2 TCP.D6R7.B2 LIB R7 2 . TC.6L8 B2 . TC TDI LIA.4B2 TP .4R L8 H. 8.B 4 TC R 2 8 L TC .6L .B2 1 TCL.5L .B2 L.4 1.B L1 2 .B2 TC TC TPV . TCTPH 4R1. . TC TPV 4R1 B2 TP .4R .B2 H TC .4 2.B R 2 T LA. 2.B TCCLA 7L3. 2 . B TCLA.B6L3. 2 B TC LA.A5L3. 2 B TCSG.B5L3 2 S 5 .B2 TCG.A5L3.B TC SG. L3.B2 SG 4L 2 TC .5R3.B2 P 3 TC .6R .B2 L. 3.B TC TCL 5L5 2 . .B T TC PV 4L5 2 T .4 .B T PH R5 2 TC CSP .4R .B2 5 D TC QA .A4L .B2 . 6 TCDQA C4L .B2 DQ .B 6.B TC A.A4L6. 2 B TC LA.A4L6. 2 B TCLA.D7L7. 2 B TCLA.C6L7. 2 B2 6 L L A TC .B 7. L 6 B2 TC A.A L7.B TC SG 6L7. 2 . B TC SG.E6L7 2 .B TCSG.D5L7 2 .B TCSG.B5L7. 2 TC SG. 5L7 B2 A . TCSG.A 4L7 B2 . TC SG.B4R7 B2 . TCSG.D4R7 B2 . TCSG.A4R7 B2 . TCSG.B5R7 B2 SG 5R .B TC .A6 7.B2 R P TC .B6 7.B2 TCP.C6R7.B2 R TCP.D6 7.B2 LIB R7 2 . TC.6L8 B2 . L TC TDI IA.4B2 TP .4R L8 H. 8.B TC 4R 2 8 TCL.6L .B2 1 TCL.5L .B2 L.4 1.B L1 2 .B2 B2_V Beam losses rate on collimators (1/m) B2_H Beam losses rate on collimators (1/m) Beam losses distribution on collimators with three versions of SixTrack The ratio of MSM-SixTrack and Fluka-SixTrack to Standard-SixTrack 10 The ratio of MSM-SixTrack to Standard-SixTrack The ratio of Fluka-SixTrack to Standard-SixTrack 1 0.1 10 The ratio of MSM-SixTrack to Standard-SixTrack The ratio of Fluka-SixTrack to Standard-SixTrack 1 0.1 Average cleaning inefficiency B1_H Standard-SixTrack Zoom in DS 𝟖. 𝟒 × 𝟏𝟎−𝟔 𝟓. 𝟔 × 𝟏𝟎−𝟔 Zoom in DS MSM-SixTrack 6.4× 𝟏𝟎−𝟔 3. 𝟐 × 𝟏𝟎−𝟔 Average cleaning inefficiency B1_V Standard-SixTrack Zoom in DS 𝟕. 𝟒 × 𝟏𝟎−𝟔 𝟓. 𝟗 × 𝟏𝟎−𝟔 Zoom in DS MSM-SixTrack 𝟓. 𝟔 × 𝟏𝟎−𝟔 𝟑. 𝟔 × 𝟏𝟎−𝟔 Average cleaning inefficiency B2_H Standard-SixTrack MSM-SixTrack Zoom in DS 𝟓. 𝟔 × 𝟏𝟎−𝟔 𝟗. 𝟗 × 𝟏𝟎−𝟔 Zoom in DS 7. 𝟔 × 𝟏𝟎−𝟔 𝟑. 𝟏 × 𝟏𝟎−𝟔 Most cold losses Average cleaning inefficiency B2_V Standard-SixTrack MSM-SixTrack Zoom in DS 𝟓. 𝟒 × 𝟏𝟎−𝟔 𝟖. 𝟎 × 𝟏𝟎−𝟔 Zoom in DS 𝟑. 𝟑 × 𝟏𝟎−𝟔 5. 𝟓 × 𝟏𝟎−𝟔 Cold losses comparison in DS region B1 1E-4 Ratio of MSM-SixTrack to Standard-SixTrack Ratio of Fluka-SixTrack to Standard-SixTrack Ratio of MSM-SixTrack to Fluka-SixTrack Ratio of cleaning inefficiency Cleaning inefficiency (1/m) Standard-SixTrack MSM-SixTrack Fluka-SixTrack 1E-5 1E-6 1E-7 1 0.1 DS1 DS2 DS3 DS1 B1_H DS2 DS3 B1_H 1E-4 Ratio of MSM-SixTrack to Standard-SixTrack Ratio of Fluka-SixTrack to Standard-SixTrack Ratio of MSM-SixTrack to Fluka-SixTrack Ratio of cleaning inefficiency Cleaning inefficiency (1/m) Standard-SixTrack MSM-SixTrack Fluka-SixTrack 1E-5 1E-6 1E-7 1 0.1 DS1 DS2 B1_V DS3 DS1 DS2 B1_V MSM-SixTrack and Fluka-SixTrack have the similar cold losses in DS region Both less than Standard-SixTrack (60% to 80%) DS3 Cold losses in DS region B2 1E-4 Ratio of MSM-SixTrack to Standard-SixTrack Ratio of Fluka-SixTrack to Standard-SixTrack Ratio of MSM-SixTrack to Fluka-SixTrack Ratio of cleaning inefficiency Cleaning inefficiency (1/m) Standard-SixTrack MSM-SixTrack Fluka-SixTrack 1E-5 1E-6 1E-7 1 0.1 DS1 DS2 DS3 DS1 B2_H DS2 DS3 B2_H 1E-4 Ratio of MSM-SixTrack to Standard-SixTrack Ratio of Fluka-SixTrack to Standard-SixTrack Ratio of MSM-SixTrack to Fluka-SixTrack Ratio of cleaning inefficiency Cleaning inefficiency (1/m) Standard-SixTrack MSM-SixTrack Fluka-SixTrack 1E-5 1E-6 1 0.1 1E-7 DS1 DS2 B2_V DS3 DS1 DS2 DS3 B2_V MSM-SixTrack and Fluka-SixTrack have the similar cold losses in DS region Both less than Standard-SixTrack (60% to 80%) Single-jaw test Configuration • LHC 2016 configuration • Simulation codes: Standard-SixTrack, MSM-SixTrack • Single-jaw chosen: TCP. C6L7.B1 • Beam scenery: B1_H • Jaw aperture: 5.5 σ • Jaw thickness: 1 cm • Beam type: pencil beam • Impact parameter: 1 σ • 10 M particles • Single turn • All plots normalized to 1 Single-jaw Single jaw test: angle offset 0.020 0.040 - Standard-SixTrack - MSM-SixTrack 0.018 - Standard-SixTrack - MSM-SixTrack 0.035 Relative Frequency Relative Frequency 0.016 0.014 0.012 0.010 0.008 0.006 0.030 0.025 0.020 0.015 0.010 0.004 0.005 0.002 0.000 0.00000 0.00002 0.00004 0.00006 Angle offset due to elastic scattering 0.00008 2 0.00010 2 1/2 (x' +y' ) 0.000 0.00000 0.00005 0.00010 Angle offset due to SD scattering 0.00015 2 0.00020 2 1/2 (x' +y' ) energy offset Relative Frequency Standard-SixTrack MSM-SixTrack Standard-SixTrack MSM-SixTrack 0.1 0.001 0.0001 0.0003 0.0005 0.0007 0.0009 Energy offset due to Single Diffractive scattering (P-P0)/P0 0.01 Standard-Sixtrack MSM-Sixtrack 0.1 0.001 1E-4 3E-7 1E-6 1.7E-6 Energy offset due to ionization 2.4E-6 Relative Frequency Relative Frequency 1 0.01 0.01 0.001 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Energy offset due to Single Diffractive scattering (P-P0)/P0 Conclusions Four sceneries (B1_H, B1_V, B2_H, B2_V) have been compared with three versions of SixTrack: StandardSixTrack, MSM-SixTrack, and Fluka-SixTrack For the comparison of the three SixTrack versions, -> Three versions have quite similar beam loss distributions -> For beam losses on collimators, Fluka-SixTrack has the most losses while MSM-SixTrack has the least losses -> Fluka-SixTrack and MSM-SixTrack are more similar with each other in DS region than StandardSixTrack For the single-jaw tests, -> the energy offset due to ionization looks quite different, while the energy offset due to SD looks quite similar -> the angle offset due to elastic scattering and SD scattering look very similar Thanks to S. Redaelli, R. Bruce, A. Mereghetti, J. Molson, K. Sjobaek, M. Fiascaris for discussing Thanks to J. Molson for giving me the help of running MSM-SixTrack Thanks to A. Mereghetti for supplying the data of Fluka-SixTrack
© Copyright 2026 Paperzz