Redox state in jaundice: The anti-/pro-oxidant effects of bilirubin Libor Vítek 1st Faculty of Medicine, Charles University in Prague Czech Republic Heme catabolic pathway Bilirubin metabolism in the liver cell Unconjugated (premicrosomal) hyperbilirubinemia Blood Albumin Bilirubin SLCO1B1 Hepatocyte UDP-glucuronate UGT1A1 Bisglucuronosyl bilirubin ATP Conjugated (postmicrosomal) hyperbilirubinemia Bile ABCC2 Icterus Icteros = Greek term for jaundice from ancient times Yellowbird, golden oriole (Oriolus oriolus) Icteridae family of birds Two faces of bilirubin Oxidative stress defined as overproduction of reactive oxygen species (ROS) overcoming antioxidant defense capacity ROS physiologically important for energy generation defense cell against foreign antigens signalling however, ROS overproduction implicated in numerous pathologic conditions including cardiovascular, cancer, autoimmune and degenerative diseases Antioxidant defense system Function Antioxidant enzymes Superoxide dismutase Elimination of superoxide via dismutation to oxygen and hydrogen peroxide Glutathione peroxidase Elimination of peroxide via glutathione reduction Glutathione transferase Elimination of lipoperoxides via glutathione binding Catalase Elimination of peroxide via dismutation to oxygen and water Heme oxygenase Biliverdin production Biliverdin reductase Bilirubin production Antioxidant substrates Ascorbic acid (vitamin C) Bilirubin Glutathione Albumin Lipoic acid Transferin Uric acid Lactoferrin Carotenoids (vitamin A) Ferritin α-tocoferol (vitamin E) Haptoglobin, hemopexine Ubiquinol (coenzyme Q) Ceruloplasmin 1776 citations!!! No. of papers: [bilirubin and oxidative stress] or [heme oxygenase] 1996 1000 1997 1998 900 1999 2000 800 2001 2002 700 2003 2004 600 2005 2006 500 2007 2008 400 2009 2010 300 2011 135 137 178 226 287 279 378 484 511 595 642 666 730 759 832 923 200 100 0 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 HMOX1 as a therapeutic amplification funnel ((Bach, Bach, FASEB J 2005) Bilirubin oxidation A) Oxidation to biliverdin Bilirubin Biliverdin Radical monocation Radical dication according to McDonagh, in: Dolphin. The Porphyrins 1979 Extreme suprastoichiometric antioxidant effects of bilirubin were shown in studies on neuronal and HeLa cells – 10 nM bilirubin counteracted the proxidant action of 10000 times higher H2O2 concentrations (Dore, PNAS 1999, Baranano, 2002). However, this was not confirmed in recent Stocker (JBC 2009) and Mc Donagh studies (FRBM 2010) Bilirubin/biliverdin redox cycle Sedlak, T. W. et al. JAMA 2006 Bilirubin oxidation B) Photooxidation Propendyopents Monopyrollic oxidation products Bonnet R. Some recent advances in tetrapyrollic chemistry. Ann NY Acad Sci 1973 Bilirubin oxidation B) Production of BOXes 4-methyl-5-oxo-3-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide 3-methyl-5-oxo-4-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide Wurster WL. Bilirubin oxidation products (BOXes): synthesis, stability and chemical characteristics. Acta Chir Suppl 2008 Biopyrrins Vítek L. Urinary excretion of oxidative metabolites of bilirubin in subjects with Gilbert syndrome. J Gastro Hepatol 2007 Bilirubin Bilirubin:: antioxidant vs. prooxidant efficient scavenger of peroxyl radicals (PNAS 1988, JBC 1994, PNAS 1997), especially in the intravascular compartment in vitro almost 30x more potent than vitamin E in preventing LDL oxidation (Life Sci 1994) more effective protector of human ventricular monocytes than vitamin C and vitamin E analogs (Biochem Pharmacol 1996) conversely, bilirubin was shown to exert proapoptotic effects against numerous cancer cells (Ollinger, Cell Cycle 2007), as well as CNS and red blood cells (Brito, Eur J Clin Invest 2000) most likely due to increased generation of ROS (Oakes, J Biochem Mol Toxicol 2005), especially driven by heavy metals (Asad, Chem Biol Interact 2001) Bilirubin -Cu(II) complex Bilirubin-Cu(II) High 2001) free radical generating potential (Asad, Chem Biol Interac Effects of elevated bilirubin levels in Gunn rats NEONATAL NEUROTOXICITY vs. BENEFICIAL EFFECTS IN ADULT RATS 1) Resistence of Gunn rats to develop diabetes after ip. exposure to streptozocin (Fujii. Kidney Int 2010; Fu. Tohoku J Exp Med 2010) 2) Attenuation of pressor and pro-oxidant effects of angiotensin II (Pflueger, Am J Physiol Ren Physiol 2005) 3) Attenuation of DOCA (deoxycorticosterone acetate) – induced hypertension (Nath, Am J Physiol Heart Circ Physiol 2007) 4) Prevention of balloon injury-induced neointima formation (Ollinger, Circulation 2005) 5) Reduction of oxidative injury of neonatal Gunn rats exposed to hyperoxia (Dennery, FRBM 1995) Oxidative stress in experimental cholestasis (Muchov á, J Cell Mol Med 2011) (Muchová, 1) Bile duct-ligation in both Wistar and Gunn rats resulted in extreme elevation of bile acids 2) Taurocholic acid (TCA) was shown to dramatically increase markers of oxidative stress in the liver tissue 3) Bilirubin (either arteficially added to the Wistar liver homogenate, or present in Gunn rat livers) substatntially suppressed lipid peroxidation The role of bilirubin in the hepatocyte metabolism under conditions of oxidative stress (Zelenka, Biochimie Biochimie,, submitted submitted)) Influence of exogenous bilirubin on total antioxidant status (Atherosclerosis 2002) 1,8 (μM) 24.5* 31.9 40.6 55.8 79.6 133.0 y = 1.31 + 0.0034x R2 = 0.991 p < 0.00001 TAS (mM) 1.37 1.42 1.46 1.51 1.57 1.76 * = serum with defined antioxidant capacity 1,7 1,6 TAS [mM] bilirubin 1,5 1,4 1,3 0 20 40 60 80 bilirubin [uM] 100 120 140 Bilirubin and TAS bilirubin (μM) Quartile 1 Quartile 2 Quartile 3 Quartile 4 2.7-9.0 9.1-12.5 12.6-18.6 18.9-55.2 1.90 1.95 1.97 1.98 (1.87-1.95) (1.89-2.01) (1.90-2.01) (1.92-2.06) 0.0644 0.0149 <0.0001 (min-max) (n=223) TAS (mM) (median, 25-75%) P-value High TAS in subjects with Gilbert syndrome (benign hyperbilirubinemia) described also in Australian (Atherosclerosis 2008) and Turkish studies Conclusion Serum bilirubin correlates with total antioxidant status y=1.9+0.0036x R2=0.089 2,3 P<0.00001 2,2 2,1 TAS [mmol/L] (J Gastroenterol Hepatol 2008) 2,4 2,0 1,9 1,8 1,7 1,6 0 10 20 30 bilirubin [μmol/L] 40 50 60 Serum oxysterols and bilirubin Quartiles of serum bilirubin (n = 368) Bilirubin (μM) (min-max) Q1 Q2 Q3 Q4 2.7 – 7.1 7.2 – 10.3 10.4 - 14.5 14.6 – 48.6 5.3 4.3 4.0 3.3 2.1-99.6 2.1-66.5 1.7-27.3 1.6-31.7 0.004 <10-5 <10-5 7.5 6.6 5.8 5.2 3.2-164.1 3.1-132.5 2.8-49.8 2.3-78.2 0.066 <10-5 <10-5 7keto-Chol (ng/mL) (median, 25-75%) P-value 7bOH-Chol (ng/mL) (median, 25-75%) P-value 1.6 1.2 1.4 1.1 7-beta-OH-cholesterol 7-keto-cholesterol 7ketoC: 7-keto-cholesterol; 7b-OHC: 7-beta-hydroxycholesterol 1.2 1.0 0.8 0.6 0.9 0.8 0.7 0.6 0.4 y = 1.291 - 0.2036*x, r = -0.3155, p = 0.0000, r 0.2 0.8 1.0 1.0 1.2 1.4 1.6 1.8 serum bilirubin 2.0 2 y = 1.0876 - 0.0949*x, r = -0.3108, p = 0.00000, 2r = 0.0966 = 0.0995 2.2 2.4 2.6 0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 serum bilirubin 2.2 2.4 2.6 Bilirubin levels and cardiovascular diseases Due to its antoxidant and other biological activities, mildly elevated serum bilirubin levels have been shown to protect from coronary heart disease (Novotný L. Exp Biol Med 2003) as well as carotid atherosclerosis Relationship between IMT and age in norm o- and hyperbilirubinem ic m en 1,30 non-GS 1,20 GS 1,10 y = 0,01x + 0,332 1,00 2 IMT[mm] R = 0,32 0,90 (Vítek L. Cerebrovasc Dis 2006) 0,80 y = 0,0036x + 0,5508 R2 = 0,0734 0,70 0,60 0,50 0,40 20 30 40 50 age [years] 60 70 80 Heme catabolic pathway as a therapeutic target ? target? Heme Protective effects via HMOX1 induction Ndisang JF et al. Up-regulating the heme oxygenase system with hemin improves insulin sensitivity and glucose metabolism in adult spontaneously hypertensive rats. Endocrinology 2010;151:549. Ndisang JF, Jadhav A. Up-regulating the hemeoxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in Goto-Kakizaki rats. Endocrinology 2009;150:2627. Ndisang JF. Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab 2009;296:E1029. Chen YS et al. Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats. Chin Med J 2008;121:241. Zhong W et al.. Hemin exerts multiple protective mechanisms and attenuates dextran sulfate sodium-induced colitis. J Pediatr Gastroenterol Nutr 2010;50:132. Conclusion Bilirubin is a very strong biomarker of oxidative stress-mediated diseases Although very high levels of bilirubin are deleterious, mildly elevated bilirubin concentrations protect from diabetes, certain types of cancer, neurodegenerative and autoimmune diseases Attempts to mildly increase systemic bilirubin levels to increase protection against these diseases are currenly being explored Acknowledgement/collaboration www.hepatocity.org USA • Harvey Schwertner (Wilford Hall Med Center) • JingPing Lin (NHLBI, NIH) • Don Ostrow (University of Washington) • Ron Wong, Henk Vreman (Stanford University) • Mark McCarty (NutriGuard Research, CA) ITALY • Claudio Tiribelli (Centro Study Fegato, Trieste) • Luigi Iuliano (Universita LaSapienza, Rome) FRANCE • Roberto Motterlini (INSERM, Paris) PRAGUE • Lucie Muchová • Alena Jirásková • Martin Leníček AUSTRIA • Karl-Heinz Wagner UK • Asif Ahmed (University of Edinburgh) KOREA • Hyeon Chang Kim (Yonsei University, Seoul) AUSTRALIA • Jiří Neužil, Andrew Bulmer (Griffith University)
© Copyright 2026 Paperzz