TEM of Golgi apparatus 0.1 µm

Fig. 6-7
Outside of cell
Inside of
cell
0.1 µm
(a) TEM of a plasma
membrane
AP Biology – Tour of
the Cell Diagrams
Carbohydrate side chain
Hydrophilic
region
Hydrophobic
region
Hydrophilic
region
Phospholipid
Proteins
(b) Structure of the plasma membrane
Fig. 6-8
Surface area increases while
total volume remains constant
5
1
1
Total surface area
[Sum of the surface areas
(height  width) of all boxes
sides  number of boxes]
Total volume
[height  width  length 
number of boxes]
Surface-to-volume
(S-to-V) ratio
[surface area ÷ volume]
6
150
750
1
125
125
6
1.2
6
Fig. 6-9a
Nuclear
envelope
ENDOPLASMIC RETICULUM (ER)
Flagellum
Rough ER
Nucleolus
NUCLEUS
Smooth ER
Chromatin
Centrosome
Plasma
membrane
CYTOSKELETON:
Microfilaments
Intermediate
filaments
Microtubules
Ribosomes
Microvilli
Golgi
apparatus
Peroxisome
Mitochondrion
Lysosome
Fig. 6-9b
NUCLEUS
Nuclear envelope
Nucleolus
Chromatin
Rough endoplasmic
reticulum
Smooth endoplasmic
reticulum
Ribosomes
Central vacuole
Golgi
apparatus
Microfilaments
Intermediate
filaments
Microtubules
Mitochondrion
Peroxisome
Chloroplast
Plasma
membrane
Cell wall
Plasmodesmata
Wall of adjacent cell
CYTOSKELETON
Fig. 6-10
Nucleus
1 µm
Nucleolus
Chromatin
Nuclear envelope:
Inner membrane
Outer membrane
Nuclear pore
Pore
complex
Surface of
nuclear envelope
Rough ER
Ribosome
1 µm
0.25 µm
Close-up of nuclear
envelope
Pore complexes (TEM)
Nuclear lamina (TEM)
Fig. 6-11
Cytosol
Endoplasmic reticulum (ER)
Free ribosomes
Bound ribosomes
Large
subunit
0.5 µm
TEM showing ER and ribosomes
Small
subunit
Diagram of a ribosome
Fig. 6-12
Smooth ER
Rough ER
ER lumen
Cisternae
Ribosomes
Transport vesicle
Smooth ER
Nuclear
envelope
Transitional ER
Rough ER
200 nm
Fig. 6-13
cis face
(“receiving” side of Golgi
apparatus)
0.1 µm
Cisternae
trans face
(“shipping” side of Golgi
apparatus)
TEM of Golgi apparatus
Fig. 6-14
Nucleus
1 µm
Vesicle containing
two damaged organelles
1 µm
Mitochondrion
fragment
Peroxisome
fragment
Lysosome
Lysosome
Digestive
enzymes
Plasma
membrane
Lysosome
Peroxisome
Digestion
Food vacuole
Vesicle
(a) Phagocytosis
(b) Autophagy
Mitochondrion
Digestion
Fig. 6-17
Intermembrane space
Outer
membrane
Free ribosomes
in the
mitochondrial
matrix
Inner
membrane
Cristae
Matrix
0.1 µm
Fig. 6-18
Ribosomes
Stroma
Inner and outer
membranes
Granum
Thylakoid
1 µm
Fig. 6-21
ATP
Vesicle
Receptor for
motor protein
Motor protein
(ATP powered)
Microtubule
of cytoskeleton
(a)
Microtubule
(b)
Vesicles
0.25 µm
Table 6-1
10 µm
10 µm
10 µm
Column of tubulin dimers
Keratin proteins
Actin subunit
Fibrous subunit (keratins
coiled together)
25 nm
7 nm


Tubulin dimer
8–12 nm
Fig. 6-22
Centrosome
Microtubule
Centrioles
0.25 µm
Longitudinal section of Microtubules
one centriole
Cross section
of the other centriole
Fig. 6-24
0.1 µm
Outer microtubule
doublet
Dynein proteins
Central
microtubule
Radial
spoke
Protein crosslinking outer
doublets
Microtubules
Plasma
membrane
(b) Cross section of
cilium
Basal body
0.5 µm
(a) Longitudinal section
of cilium
0.1 µm
Triplet
(c) Cross section of basal body
Plasma
membrane
Fig. 6-25
Microtubule
doublets
ATP
Dynein
protein
(a) Effect of unrestrained dynein movement
ATP
Cross-linking proteins
inside outer doublets
Anchorage
in cell
(b) Effect of cross-linking proteins
1
3
2
(c) Wavelike motion
Fig, 6-27a
Muscle cell
Actin filament
Myosin filament
Myosin arm
(a) Myosin motors in muscle cell contraction
Fig. 6-28
Secondary
cell wall
Primary cell
wall
Middle
lamella
1 µm
Central vacuole
Cytosol
Plasma membrane
Plant cell walls
Plasmodesmata
Fig. 6-30
Collagen
Proteoglycan
complex
EXTRACELLULAR FLUID
Polysaccharide
molecule
Carbohydrates
Fibronectin
Core
protein
Integrins
Proteoglycan
molecule
Plasma
membrane
Proteoglycan complex
Microfilaments
CYTOPLASM
Fig. 6-32
Tight junction
Tight junctions prevent
fluid from moving
across a layer of cells
0.5 µm
Tight junction
Intermediate
filaments
Desmosome
Desmosome
Gap
junctions
Space
between
cells
Plasma membranes
of adjacent cells
Extracellular
matrix
1 µm
Gap junction
0.1 µm