Sec 2.4: Exact Differential Equations z f ( x, y ) differenti al : Example : f f dz dx dy x y Find the differential z f ( x, y) where f ( x, y) x 2 y y special case : Example : f ( x, y ) c f f dx dy 0 x y 2 xydx ( x 2 1)dy 0 Sec 2.4 Sec 2.4: Exact Differential Equations Definition 2.3 (part 1) An expression M ( x, y )dx N ( x, y )dy is an exact if it corresponds to the differential of some function f(x,y) Definition 2.3 (part 2) A 1st order DE M ( x, y)dx N ( x, y)dy 0 is an exact if LHS is an exact differential Example : 1 2 xydx ( x 2 1)dy 0 f x2 y y Sec 2.4 How?? : check exact or not Theorem 2.1 Given a DE: M N y x If Example : 1 2 3 M ( x, y )dx N ( x, y )dy 0 ----- (1) (1) exact 2 xydx ( x 2 1)dy 0 x 2 ydx y 2 xdy 0 (e 2 y y cos( xy))dx (2 xe2 y x cos( xy) 2 y)dy 0 Sec 2.4 How to Solve ? M ( x, y )dx N ( x, y )dy 0 Given a DE: ----- (1) Method of Solution: Step 1 Step 2 Step 3 Example : Check if (1) is an exact Find f ( x, y ) The family of solutions is: 1 M N y x (such that : f M , x f N) y f ( x, y ) c 2 xydx ( x 2 1)dy 0 f x2 y y Sec 2.4 How to find f(x,y) ? Given an exact DE: Step 1 Step 2 M ( x, y )dx N ( x, y )dy 0 Integrate wrt x: M f x Differentiate (2) wrt y and equate to N ----- (1) f Mdx g ( y ) ----- (2) find g ' ( y) Check point: g ' ( y ) function of y only Step 3 Step 3 Example : Find: g ( y) ----- (3) Use (2) and (3) to write: 1 2 f ( x, y ) 2 xydx ( x 2 1)dy 0 f x2 y y (e 2 y y cos( xy))dx (2 xe2 y x cos( xy) 2 y)dy 0 Sec 2.4 How to find f(x,y) ? Given an exact DE: Step 1 Step 2 M ( x, y )dx N ( x, y )dy 0 Integrate wrt x: M f x Differentiate (2) wrt y and equate to N ----- (1) f Mdx g ( y ) ----- (2) find g ' ( y) Check point: g ' ( y ) function of y only Step 3 Step 3 Example : Find: g ( y) ----- (3) Use (2) and (3) to write: 1 f ( x, y ) 2 xydx ( x 2 1)dy 0 f x2 y y Sec 2.4 Made Exact Given an non-exact DE: Find u so that : Mdx Ndy 0 uMdx uNdy 0 ----- (1) Exact This u is called integrating factor case 1 ( M y N x ) / N function of x u ( x) e case 2 ( M y N x ) / M function of y u ( x) e Example : xydx (2 x 2 3 y 2 20)dy 0 ( M y N x ) / Ndx ( M y N x ) / Mdy
© Copyright 2026 Paperzz