Introduction to Robotics
Kinematics
1
2 קובץ שקפים
Link Description
2
2 קובץ שקפים
Kinematics Function of a link :
Link length
Link twist
3
2 קובץ שקפים
What are the kinematics functions
of this link?
a=7
= 450
4
2 קובץ שקפים
Link offset d
Joint angle
Describe the
connection
between two
links
5
2 קובץ שקפים
Summary of the link parameters in
terms of link frames.
ai = the distance from Zi to Zi+1 measured along Xi
i = the angle between Zi and Zi+1 measured about Xi
di = the distance from Xi-1 to Xi measured along Zi
i = the angle between Xi-1 and Xi measured about Zi
ai > 0 since it corresponds to a distance;
However, i , di , i are signed quantities.
We usually choose
6
2 קובץ שקפים
There is no unique attachment of frames to links:
1. When we align Zi axis with joint axis i, two
choices of the Zi direction.
2. When we have intersecting joint axes (ai=0), two
choices of the Xi direction, corresponding to
choice of signs for the normal to the plane
containing Zi and Zi+1.
3. When axes i and i+1 are parallel, the choice of
origin location for {i} is arbitrary (generally
chosen in order to cause di to be zero).
7
2 קובץ שקפים
קובץ שקפים 2
8
Three link Arm
(RRR)
Schematic
Parallel axes
Find coordinate
systems and
a, , d, of all
the three accesses
9
2 קובץ שקפים
z is overlapping the joint’s axis
x is perpendicular to the two
joint’s axis
y is …?
0 = 1 = 2 = 0
a0 = 0; a1 = L1; a2 = L2
d1 = d2 = d3 = 0
i = i
10
2 קובץ שקפים
Three link Arm : RPR mechanism
“Cylindrical” robot – 2 joints analogous to polar
coordinates when viewed from above.
Schematic: point – axes intersection; prismatic joint at
minimal extension
Find coordinate systems and a, , d, (i=3)
11
2 קובץ שקפים
0 = 0; 1 = 90; 2 = 0
a0 = 0; a1 = 0; a2 = 0
d1 = 0; d2 = d2; d3 = L2;
1 = 1; 2 = 0; 3 = 3;
12
2 קובץ שקפים
Schematic RRR; Parallel / Intersect (orthogonal) axes
Find coordinate systems and a, , d, of all joints
Two possible frame assignments and corresponding
parameters for the two possible choices of Z and X
directions.
13
2 קובץ שקפים
1 = -90;
a1 = 0;
d1 = 0;
1 = 1;
14
2 = 0
a2 = L2
d2 = L1;
2 = -90+2
1 = 90;
a1 = 0;
d1 = 0;
1 = 1;
2 = 0
a2 = L2
d2 = -L1
2 = 90+2
2 קובץ שקפים
1 = 90;
a1 = 0;
d1 = 0;
1 = 1;
15
2 = 0
a2 = L2
d2 = L1;
2 = 90+2
1 = -90;
a1 = 0;
d1 = 0;
1 = 1;
2 = 0
a2 = L2
d2 = -L1
2 = -90+2
2 קובץ שקפים
i 1
16
i 1
i
P
i 1
R
T P
i
R
Q
Q
P
P
i
i
T T T TP
2 קובץ שקפים
i 1
i
i 1
R
T T T T T
R
Q
P
R
R
i
T R X i 1 D X ai 1 RZ i DZ d i
i 1
i
T Screw X i 1 , ai 1 ScrewZ d i , i
i 1
i
cos( i )
sin( i )
sin( ) cos( ) cos( ) cos( )
i
i 1
i
i 1
i 1
iT
sin( i ) sin( i 1 ) cos( i ) sin( i 1 )
0
0
17
0
sin( i 1 )
cos( i 1 )
0
sin( i 1 )d i
cos( i 1 )d i
1
ai 1
2 קובץ שקפים
0 = 0; 1 = 90; 2 = 0
a0 = 0; a1 = 0; a2 = 0
d1 = 0; d2 = d2; d3 = L2;
1 = 1; 2 = 0; 3 = 3;
18
2 קובץ שקפים
cos(1 ) sin( 1 )
sin( ) cos( )
1
1
0
1T
0
0
0
0
19
0 0
0 0
1 0
0 1
2 קובץ שקפים
1
0
1
2T
0
0
20
0
0 1 d2
1 0
0
0 0
1
0
0
2 קובץ שקפים
cos( 3 ) sin( 3 )
sin( ) cos( )
3
3
2
3T
0
0
0
0
21
0
N
0
0 0
1 L2
0 1
0
T T T T ...
0
1
1
2
2
3
N 1
N
T
2 קובץ שקפים
© Copyright 2026 Paperzz