G. Murante – INAF OATo P. Monaco – Univ. Ts M. Calabrese – SISSA Ts G. De Lucia - INAF OATs S. Borgani – Univ. Ts K. Dolag – Obs..Munchen Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 1 MUPPI: MUlti Phase Particle Integrator Murante, Monaco, Giovalli, Borgani, Diaferio, 2010, MNRAS, 405, 1491 Star formation & feedback algorithm Implemented in GADGET-3 Integrates ISM equations for each particle at each SPH time step Effective thermal feedback Obtains SK relation without imposing it (See Monaco, Murante, Borgani, Dolag, 2012, MNRAS, 421, 2485) Gives ISM characteristics Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 2 MASS FLOWS Mc M c = M cool M sf M evap MOLECULAR GAS M MH2 -> SF cool M sf tcool f star M H 2 t dyn f rest M sf M h M rest M M evap f evap M H 2 t dyn On hot phase! Mh RESTORATION On cold phase! M = M sf M rest Heidelberg, May 15th, 2012 M h = M cool M rest Disk Galaxy Formation in a cosmological(context) content M evap 3 Energy exchanges SPH Multi-Phase particle Δt, ΔS Ėhydro = ΔS/(γ-1)ρ(γ-1)Δt Ėhot = -Ėcool+Ėsn+Ėhydro new ΔS etc... Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 4 ENERGY FLOW(S..) Hot phase energy Eh ENERGY RELEASED BY SNe E SN E 51 f fb ,in M sf E SN E cool E hydro ENERGY CONTRIBUTION DUE TO HYDRODYNAMICS ENERGY LOSS DUE TO COOLING sf E cool Eh tcool E 1 fcoll P0 1 4 Pext Heidelberg, May 15th, 2012 1 S SPH dt ( 1) 1 this is the ENTROPY variation due to SPH hydrodynamics PRESSURE-DRIVEN SF M H 2 fcoll Mc hydro Phenomenological (Blitz & Rosolowsky 2006) Pext Ptherm with P0 = 35000 Disk Galaxy Formation in a cosmological(context) content 5 More characteristics • Thermal energy given to neighbouring particles in a directional way • Chemical evolution (Tornatore et al 2007) • Primordial AND metal dependent cooling • Stocastic kinetic winds: a fraction of particles continously receive also kinetic energy from neighbouring particles. They decouple from the gas. Wind speed depends on local SF. In cosmological simulations, velocities up to 1000 km/s Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 6 Dynamical SK relation Monaco, Murante, Borgani, Dolag, 2012, MNRAS, 421, 2485 Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 7 Cosmological disk galaxy simulations (Stoehr+, 2002, MNRAS, 355, 84) (See The Aquila comparison project, Scannapieco+, 2012, MNRAS, in press) Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 8 Our best disk galaxy Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 9 How does the gas accrete? We: • use simulations without chemical evolution/metal cooling • identify stars/gas particles at z=0 within R200, Rgal=0.1 R200 • follow back particles and recorded their maximum T • also construct SUBFIND merger trees of haloes • use three temperature ranges: 1. 0 < Tmax < 250,000 K (cold); 2. 250,000 K < Tmax < 106 K (warm) 3. Tmax > 106 K • see to which accretion channel gas particles belong, if they ever were into clumps, both for particles within R200 and Rgal. Murante, Calabrese, De Lucia, Monaco Borgani, Dolag, 2012, ApJL, 749, 34 Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 10 Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 11 Accretion channels Warm gas GADGET Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 12 Galaxy Heidelberg, May 15th, 2012 GA vs AQ Disk Galaxy Formation in a cosmological(context) content Halo 13 Multiphase properties of gas in channels Aq-C-5 Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 14 Resolution (results for accretion on galaxy) Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 15 Metal cooling (results for GA1) Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 16 Clumpiness Cold gas is clumpy! Our gas clumps have DM… (107 Msol min) Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content (results for GA2) 17 Conclusions • MUPPI can produce reasonable disk galaxies • Accretion on halo is mainly cold • With an efficient thermal feedback scheme, a new gas accretion channel on galaxy arises: warm accretion • Warm accretion is fuelled by gas heated by Sne feedback • Cold accretion on galaxies is at least 50% clumpy • Our result does not depend upon resolution, our chosen halo, chemical evolution/metal cooling: only on the efficiency of thermal feedback Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content 18
© Copyright 2026 Paperzz