The convex hull of randomly chosen points Christian Buchta Salzburg University Workshop on Stochastic Geometry and its Applications Rouen, March 30, 2012 Christian Buchta The convex hull of randomly chosen points Christian Buchta The convex hull of randomly chosen points Christian Buchta The convex hull of randomly chosen points Rényi and Sulanke (1963) 2 ENn (K ) = r log n + O(1) 3 Rényi and Sulanke (1964) 2 log n EAn (K ) = 1 − r +O 3 n 1 n Efron (1965) ENn+1 (K ) = (n + 1) (1 − EAn (K )) ⇒ EAn (K ) = 1 − Christian Buchta ENn+1 (K ) n+1 The convex hull of randomly chosen points B. (1984) ENn (triangle) = 2 n−1 X 1 k k=1 " n # 8 X1 1 1 ENn (square) = 1− k − 3 k n 2n 2 k=1 Christian Buchta The convex hull of randomly chosen points B. (1984) " n k ! X1 5 ENn (regular hexagon) = 4 1− + k 6 k=1 n n n 1 1 5 1 +2 −1− + + − 6 6 2 n 6n ! n−2 ! # 2n−k − 1 2 n 1 X n k k n−2 +2 (−1) 7 + 1 (−1) 2 6n k n−k k=0 Christian Buchta The convex hull of randomly chosen points Theorem (B. and Reitzner, 1997): Let K be a plane convex body of unit area, and consider the family of all directed chords that divide K into a part of area s to the left and a part of area 1 − s to the right. The locus of the midpoints of these chords is a closed curve Ms . Let the orientation of Ms correspond to the chords rotating in the counter-clockwise direction. Put Z K[s] := 1 − w (z, Ms )dz, z∈K \Ms where w (z, Ms ) is the winding number of Ms about the point z. Christian Buchta The convex hull of randomly chosen points Then 4 pjk (K ) = jk 3 Z 1 s j−1 (1 − s)k−1 K[s] ds. 0 Especially, the expected number ENn (K ) of vertices of the convex hull of n points distributed independently and uniformly in K is given by Z 1 4 ENn (K ) = n pn−1,1 (K ) = n(n − 1) s n−2 K[s] ds 3 0 and the expected area EAn (K ) of the convex hull of n such points by Z 1 4 s n−1 K[s] ds. EAn (K ) = 1 − pn,1 (K ) = 1 − n 3 0 Christian Buchta The convex hull of randomly chosen points Ms for the regular pentagon (a) s = √ 1 − 105 2 ≈ 0.276393 1:1 Christian Buchta 0.4 (b) s1=: 0.3 The convex hull of randomly chosen points Ms for the regular pentagon 0.46 (c) s 1=: 0.2 Christian Buchta (d) s = √ 2 + 255 5 ≈ 0.489443 1 : 0.15 The convex hull of randomly chosen points Ms for the regular pentagon 0.495 (e) s 1=: 0.15 Christian Buchta 0.5 (f) s1 = : 0.15 The convex hull of randomly chosen points Theorem (B. and Reitzner, 1997): Let K be a convex polygon of unit area with vertices v1 , . . . , vr . Denote by shi the area of the convex hull of the vertices vh , vh+1 , . . . , vi−1 , vi . Put ( 0 if vh vh+1 and vi vi+1 are parallel, 1 := shi + sh+1,i+1 − sh,i+1 − sh+1,i fhi else. s s −s s hi h+1,i+1 h,i+1 h+1,i Christian Buchta The convex hull of randomly chosen points Then r 2r 2X r ENn (K ) = (log n + C ) + log si,i+2 + − 3 3 3n i=1 ∞ ∞ r 2r X B2m 1 2 X n!(m − 1)! X 1 − − m + 3 2m n2m 3 (n + m)! fi,i+2 m=1 m=1 n i=1 + O( max (1 − si,i+2 ) ), i=1,...,r where the constants B2m are the Bernoulli numbers. Christian Buchta The convex hull of randomly chosen points Classical“ Hypergeometric Function: ” 2 F1 (α1 ,α2 ; β1 ; x) =1+ = = α1 α2 x α1 (α1 + 1)α2 (α2 + 1) x 2 + + ··· = β1 1! β1 (β1 + 1) 2! ∞ X (α1 )k (α2 )k x k , (β1 )k k! k=0 where (α)k = α(α + 1) · · · (α + k − 1). Christian Buchta The convex hull of randomly chosen points Generalized Hypergeometric Function: A FB (α1 , α2 , . . . , αA ;β1 , β2 , . . . , βB ; x) = ∞ X (α1 )k (α2 )k · · · (αA )k = k=0 Christian Buchta xk . (β1 )k (β2 )k · · · (βB )k k! The convex hull of randomly chosen points Theorem (B. and Reitzner, 2001) The expected volume V(n) of the convex hull of n random points chosen independently and uniformly from a tetrahedron of volume one is given by: Christian Buchta The convex hull of randomly chosen points n−2 n − 2 X 1 1 + (−1)k 3 (n + 1) k (k + 3)3 k=0 n − 2 4 X 2k2 3 j2 +j3 j1 , . . . , j4 k1 , k2 +...+j =n−2 2 3(n − 1)n V(n) = 1 − − n+1 4 − 9(n − 1)n 2 " # j1 5 k1 +k2 +k3 =4 j1 ,...,j5 ,k1 ,k2 ,k3 ≥0 × B(j2 + 2j3 + 3j4 + 3j5 + k2 + 2k3 + 1, 3j1 + 2j2 + j3 + 2k1 + k2 + 1) × B(n + 1, j5 + k3 + 1) B(2j1 + j2 + k1 + 1, j5 + 2) × 3 F 2 (j5 + k3 , n + 1, 2j1 + j2 + k1 + 1; j5 + k3 + n + 2, 2j1 + j2 + j5 + k1 + 3; 1) n − 2 2 2 X + 6(n − 1)n 3 j2 +j3 j , . . . , j l l 1 4 1 3 j +...+j =n−2 1 5 l1 +l2 =2 l3 +l4 =2 j1 ,...,j5 ,l1 ,l2 ,l3 ,l4 ≥0 × B(j2 + 2j3 + 3j4 + 3j5 + l2 + l4 + 3, 3j1 + 2j2 + j3 + l1 + l3 + 3) × B(n + 1, j5 + l4 + 1) B(2j1 + j2 + l1 + 1, j5 + 3) × 3 F2 (j5 + l4 + 1, n + 1, 2j1 + j2 + l1 + 1; j5 + l4 + n + 2, 2j1 + j2 + j5 + l1 + 4; 1). Christian Buchta The convex hull of randomly chosen points The first non-trivial values are: V(4) = V(5) = V(6) = V(7) = V(8) = V(9) = V(10) = V(11) = π2 13 − 720 15015 13 π2 − 288 6006 89π 2 127 − 1680 323323 307 211π 2 − 2880 554268 22829π 2 41369 − 302400 47805615 11129 461π 2 − 67200 817190 641303 3058061π 2 − 332640 4775249765 37723 6445438π 2 − 172800 9116385915 Christian Buchta ≈ 0.0173 ≈ 0.0434 ≈ 0.0728 ≈ 0.1028 ≈ 0.1320 ≈ 0.1600 ≈ 0.1864 ≈ 0.2113 The convex hull of randomly chosen points Identity of the values V(n): For m = 2, 3, . . . V(2m + 1) = m−1 X k=1 2k (2 B2k 2m + 1 − 1) V(2m − 2k + 2), k 2k − 1 where the constants B2k are the Bernoulli numbers 1 1 1 1 B2 = , B4 = − , B6 = , B8 = − , . . . . 6 30 42 30 Christian Buchta The convex hull of randomly chosen points Thus the values are related by: 5 V(4), 2 7 35 V(7) = V(6) − V(4), 2 4 9 V(9) = V(8) − 21 V(6) + 63 V(4), 2 11 165 2805 V(11) = V(10) − V(8) + 231 V(6) − V(4). 2 4 4 V(5) = Christian Buchta The convex hull of randomly chosen points Bárány and B. (1993) ENn (P) = F (P) d−1 d−2 log n+O log n log log n (d + 1)d−1 (d − 1)! Christian Buchta The convex hull of randomly chosen points Groeneboom (1988) Nn − 23 r log n D q → N (0, 1) 10 r log n 27 Cabo and Groeneboom (1994) Dn − 23 rn−1 log n D q → N (0, 1) 100 −1 rn log n 189 Christian Buchta The convex hull of randomly chosen points Efron (1965) ENn+1 EVn =1− vol K n+1 B. (2000/2005) k Y Nn+k =E 1− n+i (vol K )k i=1 EVnk Thus the k th moment of Vn can be expressed by the first k moments of Nn+k : EVnk 1 1 = 1− + ··· + ENn+k n+1 n+k (vol K )k 1 EN k . + · · · + (−1)k (n + 1) · · · (n + k) n+k Christian Buchta The convex hull of randomly chosen points Christian Buchta The convex hull of randomly chosen points Christian Buchta The convex hull of randomly chosen points Bárány, Rote, Steiger and Zhang (2000) (n) qn = 2n n!(n + 1)! B. (2006) (n) qk 1 i1 (i1 + i2 ) · · · (i1 + i2 + . . . + ik ) i1 i2 · · · ik × (i1 + 1)(i1 + i2 + 1) · · · (i1 + i2 + . . . + ik + 1) = 2k X where i1 , i2 , . . . , ik ∈ N such that i1 + i2 + . . . + ik = n Christian Buchta The convex hull of randomly chosen points Recurrence formulae: 2 (n−1) (n) q qn = n(n + 1) n−1 n−1 X 2 (n) (j) qk = (n − j)qk−1 n(n + 1) j=k−1 n(n + 1) (n) (n − 2)(n − 1) (n−2) (n−1) (n−1) qk −(n −1)nqk + qk = qk−1 2 2 Christian Buchta The convex hull of randomly chosen points Hence, (n − 2)(n − 1) n(n + 1) m m ENnm − (n2 − n + 1)ENn−1 + ENn−2 2 2 m X m m−j = ENn−1 . j j=1 We study now the difference equation n(n + 1) (n − 2)(n − 1) f (n)−(n2 −n+1)f (n−1)+ f (n−2) = g (n). 2 2 Christian Buchta The convex hull of randomly chosen points Expected value and variance: n 2X1 1 ENn = + 3 k 3 k=1 ENn2 4 = 9 n X 1 k !2 k=1 var Nn = 10 27 n n 22 X 1 4 X 1 4 25 + + + − 27 k 9 k 2 27 9(n + 1) k=1 n X k=1 1 4 + k 9 Christian Buchta k=1 n X k=1 1 4 28 + − k 2 27 9(n + 1) The convex hull of randomly chosen points Third Moment: ENn3 = 8 27 − − 16 9 8 9n n X 1 k k=1 n X k2 =1 n X k=1 !3 32 + 27 n X 1 k !2 k=1 n + 8X 1 106 − 2 9 k 81 ! k=1 k2 n n 1 X 1 32 X 1 16 X 1 91 + + + 2 2 3 k1 27 k 27 k 81 k2 k1 =1 k=1 k=1 1 16 − k 27(n + 1) Asymptotic behaviour of the mth moment: m 2 m ENn = log n + O logm−1 n 3 Christian Buchta The convex hull of randomly chosen points n X 1 k k=1 Christian Buchta The convex hull of randomly chosen points Position of the points: Type (a) (n) pa = (n − 2)(n − 3) n(n − 1) Christian Buchta The convex hull of randomly chosen points Position of the points: Type (b) (n) pb = Christian Buchta 4(n − 2) n(n − 1) The convex hull of randomly chosen points Position of the points: Type (c) (n) pc = Christian Buchta 2 n(n − 1) The convex hull of randomly chosen points Christian Buchta The convex hull of randomly chosen points A3 A2 A0 A4 A0 = 1 − A1 = A2 = A3 = A4 = 1 2 1 2 1 2 1 2 1 2 A1 (x1 + x2 + x3 + x4 − x1 x2 − x2 x3 − x3 x4 − x4 x1 ) x1 (1 − x2 ) x2 (1 − x3 ) x3 (1 − x4 ) x4 (1 − x1 ) Christian Buchta The convex hull of randomly chosen points A3 A2 A0 A4 A1 4 (n) Pk1 ,k2 ,k3 ,k4 (x1 , x2 , x3 , x4 ) = (n − 4)! X r0 +···+r4 =n−4 r0 ≥0 r1 ≥k1 ,...,r4 ≥k4 Christian Buchta 1 r0 Y 1 (ri ) ri A q A r0 ! 0 ri ! ki i i=1 The convex hull of randomly chosen points Probability that the convex hull in the square has exactly k vertices: (n) (n) (n) (n) (n) (n) (n) pk (square) = pa pk|a + pb pk|b + pc pk|c Christian Buchta The convex hull of randomly chosen points Probability that the convex hull in the square is of a certain type and has exactly k vertices (n = 7): k 3 4 5 6 7 Σ a 0 65 1008 155 672 475 3024 145 6048 10 21 b 137 10080 1811 12600 1046 4725 223 2520 1361 151200 10 21 c 1 1008 437 25200 1621 75600 109 15120 1 1575 1 21 Σ 7 480 203 900 3409 7200 91 360 121 3600 1 Christian Buchta The convex hull of randomly chosen points Expected value and variance of Nn (triangle): ENn (triangle) = 2 n−1 X 1 k k=1 var Nn (triangle) = Christian Buchta n−1 n−1 k=1 k=1 10 X 1 4 X 1 − 9 k 3 k2 The convex hull of randomly chosen points Recent important contributions are due to: Imre Bárány Pierre Calka Xavier Goaoc Matthias Reitzner Tomasz Schreiber ... Christian Buchta The convex hull of randomly chosen points
© Copyright 2026 Paperzz