y rectangular waveguides TE10 mode b z 0 Ey 0 z 0 a x a x y rectangular waveguides TE10 mode 1 fc 2 1 fc 2 b 1 1 a b 2 z 2 0 a x a x a x y b a = 2b c λc c a fc 2fc 2 2a 0 z z 0 b 0 0 0 y y rectangular waveguides b TE10 mode 1 fc 2 1 m a 2 z 0 a 0 x a = 3 cm 2 1 fc 2 1 m 3 10 a 2 3 10 2 8 8 m a 2 1 10 10 5 GHz 2 0.03 2 9 y rectangular waveguides b TE10 mode z 0 0 kx ky 2 a 2 2 2 2 2 c a x a 2 a 2 2 2 2 c y rectangular waveguides TE10 mode 2 0 a x 1 1 2 a c c 2 2 c 1 1 2fa 2a 2 v a b 2 2 2 z 0 c a y rectangular waveguides TE10 mode a v b 2 2 c 1 2a z 0 0 2 g f 2 1 2a v 2 a x y rectangular waveguides TE10 mode b z 0 a 0 Ey z 0 a g x x y rectangular waveguides TE10 mode b 2 πx c Hz B cos 0 1 x a c a z 0 jB πx jβ πx Ey sin Hx B sin π a a a a jωωμ B π Ey ωμ a Zc ωμ Z TE 2 2 jβ Hx β ω B ωc ωc 1 1 π c ω ω a Movie to illustrate phase mixing of two propagating sinewaves in a dispersive media. c Study of an amplitude modulated pulse Movie to illustrate the propagation of an amplitude modulated pulse in a waveguide dispersion e j t z t1 z t2 z t3 z dispersion e j t z T A( ) e jo t 0 A( ) e A( z, t ) e jt e dt t1 z t2 z t3 z 2 j ( o t ( o ) z ) 2 e ( t '( o ) z 2 2 y rectangular waveguides TE10 mode b z 0 0 a 8.8.e. The transmission analogy can be applied to the transverse field components, the ratios of which are constants over guide cross sections and are given by wave impedances. A rectangular waveguide of inside dimensions [a = 4, b = 2 cm] is to propagate a TE10 mode of frequency 5 GHz. A dielectric of constant r=3 fills the guide for z>0 with an air dielectric for z<o. x y rectangular waveguides TE10 mode Z TE Ey Hx Zc ωc 1 ω 2 b Zc z 0 2 0 a x λ 1 2a λ v ac 3 108 λdielectric .035 λ v ac .06 εr 5 109 377 377 3 241 Zair 570 Z dielectric 2 2 3.5 6 1 1 8 8 y rectangular waveguides TE10 mode jB πx Ey sin a b z a jβ πx Hx B sin π a a x a, y b 1 power Re 2 E x 0, y 0 power EoHo ab 0 a 0 y Hx dxdy * x y rectangular waveguides TE10 mode b z 0 0 a lossy dielectric The wave will attenuate as it propagates. x y rectangular waveguides TE10 mode b z 0 0 Loss in walls due to finite conductivity of metal surfaces Tangential H surface current js Ohmic power loss Attenuation of the em wave a x y rectangular waveguides TE10 mode matching b z 0 Ey 0 z 0 a x a x y rectangular waveguides λc TE 2a b 8.8a. For f=3 GHz, 10 design a rectangular λc TE 01 2b 0 x waveguide with copper a z 0 10 conductor and air λc f 3 10 λ 10 cm dielectric so that the 9 λ fc 3 10 TE10 wave will propagate with a 30% want λTE10 1.3 λ 13 cm safety factor (f = a = 6.5 cm 1.30fc) but also so that wave type with next λ higher cutoff will be want λ TE 01 7.7 cm 1.3 30% below its cutoff frequency. b = 3.85 cm Cylindrical Waveguides e a j t z H t Ez Ez 2 t Hz 2 2 2 2 2 z z j Cylindrical Waveguides a j t z e 2 2 2 t Ez Ez 0 j z 1 Ez 1 Ez 2 2 Ez 0 r 2 2 r r r r j Ez AJ0 kc r cosnj 2 Bessel function 1 J0(x) J1(x) 0 0 10 20 Cylindrical Waveguides Ez AJ0 kca 0 c a 2a zero of J0 kc a c c Ez AJ0 kc r cosnj a 1 TMnl TM01; TM02; TM11; .... j z J0(x) J1(x) 0 n is angular variation l is radial variation 0 10 20 Cylindrical Waveguides a j t z e 2 2 2 t Hz Hz 0 j z 1 Hz 1 Hz 2 2 Hz 0 r 2 2 r r r r j 2 Hz BJn kc r cosnj Cylindrical Waveguides a j t z e j dJn kc r Ej B cosnj kc dr z j dJn kca Ej B cosnj 0 1 kc dr J0(x) TEnl TE 01; TE02; TE11; .... n is angular variation l is radial variation J1(x) 0 j TE 01 mode Loss decreases as frequency increases TE11 mode Field distribution is similar to TE10 mode in rectangular waveguide a v c v z 1 vg c j
© Copyright 2026 Paperzz