Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Atmospheric Radio Soundings in Argentina - Effects of Air Density Variations - Bianca Keilhauer Tokyo, February 26th, 2004 Data Acquisition • Auger Fluorescence Detector measures longitudinal shower development • Atmospheric parameter affect the development and detection at every height ⇒ Knowledge of atmospheric profiles is required Radiosonde measurements in each season are performed: 61 successful launches in total Average reached altitude ≈ 20 km a.s.l. (maximum was 28 km a.s.l.) Roughly every 20 m a set of data (h, p, T, u, wind) Used DFM-97 GPS sondes (www.graw.de) Accuracy: T < 0.2 K p < 1.0 hPa (range 200 hPa to 1080 hPa) < 0.5 hPa (range 5 hPa to 200 hPa) u < 5% Important Effects of Atmospheric Profiles on the Auger FD shower data 1. Atmospheric depth to geom. height X z dz dE dx fluorescence photons h X to h 2. Fluorescence light production fl. yieldλ (p,T) 3. Fluorescence light transmission p τ (p,T) telescope Fe Fl. Yield height h km p Fe atmosph. depth X g cm ² atmospheric depth (g/cm²) height (km a.s.l.) particle number (x 109) 10 8 Geometrical Effect atmospheric depth: Fe p X z dz h 6 5 air density: 4 ( z) p( z ) M m R T ( z) 1019eV / 0° 3 US Std. atmosphere 2 ⇒ height and time dependent Atmospheric Depth Profiles Max. of Fe-ind. 1019eV, 60o shower in US-StdA averaged measured profiles: distortion of longitudinal shower profiles shift of position of shower maximum Difference in Atmospheric Depth within seasons winter, July / August 2003 summer, January / February 2003 Longitudinal Shower Development - Energy Deposit - average of 100 simulated showers ⇒ same EAS in Ne(X) for all atmospheres ⇒ Δhmax = 436 m between winter I and summer atmosphere Difference in Energy Deposit same EAS in Ne(X) for all atmospheres Fluorescence Yield for a 1.4 MeV electron, vertical incidence • EAS excites N2 – molecules in air • de-excitation partly via fluorescence light emission (λ ≈ 300 -400 nm) • fl. yield ~ local energy deposit Position of Shower Maximum - Fluorescence Yield 7.6 km 8.4 km both EAS in US-StdA, 60°, 1019eV: → Δhmax= 800 m vertical height difference 8.0 km 8.35 km both 8.1 km same EAS in Ne(X) for all atmospheres both EAS 60°, 1019eV, p-ind. in summer, Fe-ind. in winter I: → Δhmax= 350 m vertical height difference Xmax distribution for Fe-ind. showers with 60° N_entry Mean in g/cm² RMS 1000 692 20.9 5000 713 26.1 ⇒ increase of Xmax distribution by approx. 25 % same EAS in Ne(X) for all atmospheres Photons at the telescope Fe, 1019eV, 60°, same EAS in Ne(X) for all atmospheres Photons at the telescope Fe, 1019eV, 60°, same EAS in Ne(X) for all atmospheres Summary • Atmospheric conditions influence the: - Shower development - Fluorescence light emission - Light transmission • EAS profiles are shifted and distorted: - Xmax position - Energy reconstruction - Distribution of Xmax broadened in dependence of incidence angle (more important for Fe-ind. EAS than for p-ind. ) • Fluorescence yield is height and (p,T) - dependent Difference of Atmospheric Depth Profiles for pressure at ground: 825.0 ± 0.2 hPa, 829.0 ± 0.2 hPa, 826.0 ± 0.2 hPa, 834.5 ± 0.2 hPa Atmospheric Depth Distribution at 2400 m for the individual profiles measured in Argentina N_entry Mean in g/cm² RMS 61 783 4 15 785 2 11 783 5,5 17 781 4,7 18 783 2,2 Atmospheric Depth Distribution at 8400 m for the individual profiles measured in Argentina N_entry Mean in g/cm² RMS 61 357 8,2 15 365 1,7 11 359 4,6 17 348 7,6 18 358 5,3
© Copyright 2026 Paperzz