Introduction Colorful Functions Series Colorful visualization of complex functions Levente Lócsi Department of Numerical Analysis, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary NuHAG Seminar Vienna, April 6, 2011 Conclusions Introduction Colorful Functions Series Motivation – What are these? Conclusions Introduction Colorful Functions Series Motivation – History & Possible future work Conclusions Introduction Colorful Functions Table of Contents Introduction ’Colorful’ plots Discussion of some functions Function series Conclusions Series Conclusions Introduction Colorful Functions Table of Contents Introduction ’Colorful’ plots Discussion of some functions Function series Conclusions Series Conclusions Introduction Colorful Functions Series Plotting R → R functions Conclusions Introduction Colorful Functions Series Conclusions Complex numbers & arithmetic Im Im z = x + iy y z1 + z2 z2 r ϕ z1 · z2Im z1 x Re Re Im ϕ1 + ϕ2 z2 ϕ2z1 ϕ1 Re z Re z Introduction Colorful Functions Series Complex plots – Two planes f (z) = z 2 Conclusions Introduction Colorful Functions Series Complex plots – Two planes f (z) = exp z = e z = e x +iy = e x · e iy = e x (cos y + i sin y ) Conclusions Introduction Colorful Functions Series Complex plots – Vectorfields f (z) = z 2 − 1 Conclusions Introduction Colorful Functions Series Complex plots – Vectorfields f (z) = exp z Conclusions Introduction Colorful Functions Series Complex plots – 3D (2 × R2 → R) f1 (x, y ) = x 2 − y 2 f2 (x, y ) = 2xy f (z) = z 2 Conclusions Introduction Colorful Functions Series Complex plots – 3D (2 × R2 → R) f1 (x, y ) = e x cos y f2 (x, y ) = e x sin y f (z) = exp z Conclusions Introduction Colorful Functions Series Complex plots – One image (complexplot) f (z) = z 2 Conclusions Introduction Colorful Functions Series Complex plots – One image (complexplot) f (z) = exp z Conclusions Introduction Colorful Functions Series Complex plots – One image (complexplot) f (z) = sin z Conclusions Introduction Colorful Functions Series Complex plots – Fractal coloring The Mandelbrot set Conclusions Introduction Colorful Functions Table of Contents Introduction ’Colorful’ plots Discussion of some functions Function series Conclusions Series Conclusions Introduction Colorful Functions Series Conclusions The idea of ’colorful’ plotting • Assign unique colors to complex numbers • C → B3 , with B = [0..255], RGB • Plot f : C → C by painting the pixels on a plane (on a square / interval) the color assigned to the value f(z) • Different colorings. . . Introduction Colorful Functions Series Conclusions The idea of ’colorful’ plotting • Assign unique colors to complex numbers • C → B3 , with B = [0..255], RGB • Plot f : C → C by painting the pixels on a plane (on a square / interval) the color assigned to the value f(z) • Different colorings. . . Introduction Colorful Functions Series Conclusions The idea of ’colorful’ plotting • Assign unique colors to complex numbers • C → B3 , with B = [0..255], RGB • Plot f : C → C by painting the pixels on a plane (on a square / interval) the color assigned to the value f(z) • Different colorings. . . Introduction Colorful Functions Example coloring: ImRe • Treat the real and imaginary part separately • R → B (e.g. red and blue) • In other words: • Note: we already have the plot of f (z) = z Series Conclusions Introduction Colorful Functions Colorings • </=, magnitude / argument Series Conclusions Introduction Colorful Functions Series Advantages & disadvantages • Concise, perspicuous (’übersichtlich’) • Beautyful • ’Waste of paint’ Conclusions Introduction Colorful Functions Table of Contents Introduction ’Colorful’ plots Discussion of some functions Function series Conclusions Series Conclusions Introduction Colorful Functions Functions • f (z) Series Conclusions Introduction Colorful Functions Constant • f (z) = 0 Series Conclusions Introduction Colorful Functions Identity • f (z) = z Series Conclusions Introduction Colorful Functions Conjugate – 1 • f (z) = z Series Conclusions Introduction Colorful Functions Conjugate – 2 • f (z) = z Series Conclusions Introduction Colorful Functions Linear • f (z) = (2 + i)z + 2 Series Conclusions Introduction Colorful Functions Square – 1 • f (z) = z 2 Series Conclusions Introduction Colorful Functions Square – 2 • f (z) = z 2 Series Conclusions Introduction Colorful Functions Square – 3 • f (z) = z 2 Series Conclusions Introduction Colorful Functions Series A polynomial of degree two • f (z) = z 2 − 1 Conclusions Introduction Colorful Functions Series Polynomials of degree two – animation • Let f (z) = (z − t0 )(z + t0 ), where • t0 = e iϕ , ϕ ∈ [0..π]. Im t0 −t0 Re Conclusions Introduction Colorful Functions Series Polynomials of degree two – animation Please download video by clicking here. Or use this url: http://locsi.web.elte.hu/complex/doc/k_video1_negyzetes.avi Conclusions Introduction Colorful Functions Series A polynomial of degree three – 1 • f (z) = (z − 2)(z + i)(z + 2 − i) Conclusions Introduction Colorful Functions Series A polynomial of degree three – 2 • f (z) = (z − 2)(z + i)(z + 2 − i) Conclusions Introduction Colorful Functions And yet another one • f (z) = (z − 2)(z + 1)2 Series Conclusions Introduction Colorful Functions Exponential – 1 • f (z) = exp z Series Conclusions Introduction Colorful Functions Exponential – 2 • f (z) = exp z Series Conclusions Introduction Colorful Functions Sine • f (z) = sin z Series Conclusions Introduction Colorful Functions Square root – 1 • f (z) = √ z (principal branch) Series Conclusions Introduction Colorful Functions Square root – 2 • f (z) = √ z (principal branch) Series Conclusions Introduction Colorful Functions Series Conclusions Square root branches – animation • Invert the square function restricted to different domains • Where is the (branch) cut / the jump? Im Im Re Re Introduction Colorful Functions Series Square root branches – animation Please download video by clicking here. Or use this url: http://locsi.web.elte.hu/complex/doc/k_video2_gyokagak.avi Conclusions Introduction Colorful Functions Logarithm • f (z) = log z (principal branch) Series Conclusions Introduction Colorful Functions Series Conclusions Logarithm branches – animation • Invert the exponential function restricted to different domains • Where is the cut / jump? Im Im Re Re Introduction Colorful Functions Series Logarithm branches – animation Please download video by clicking here. Or use this url: http://locsi.web.elte.hu/complex/doc/k_video3_logagak.avi Conclusions Introduction Colorful Functions Inversion – 1 • f (z) = 1/z Series Conclusions Introduction Colorful Functions Inversion – 2 • f (z) = 1/z Series Conclusions Introduction Colorful Functions Reciprocal • f (z) = 1/z = (1/z) Series Conclusions Introduction Colorful Functions A pole of order two – 1 • f (z) = 1/z 2 Series Conclusions Introduction Colorful Functions A pole of order two – 2 • f (z) = 1/z 2 Series Conclusions Introduction Colorful Functions Series Of singularities Laurent series +∞ X k=−∞ ck (z − a)k Order of the pole ∼ smallest (negative) index of terms with non-zero coefficient (if there are finitely many of such) Essential singularity ∼ infinite number of such terms exist Picard’s theorem May f : C → C have an essential singularity at a ∈ C. Then: ∃w0 ∈ C : ∀ε > 0 : ∀w ∈ C \ {w0 } : ∃z ∈ kε (a) : f (z) = w . Conclusions Introduction Colorful Functions Series Of singularities Laurent series +∞ X k=−∞ ck (z − a)k Order of the pole ∼ smallest (negative) index of terms with non-zero coefficient (if there are finitely many of such) Essential singularity ∼ infinite number of such terms exist Picard’s theorem May f : C → C have an essential singularity at a ∈ C. Then: ∃w0 ∈ C : ∀ε > 0 : ∀w ∈ C \ {w0 } : ∃z ∈ kε (a) : f (z) = w . Conclusions Introduction Colorful Functions An essential singularity • f (z) = cos 1 z Series Conclusions Introduction Colorful Functions A linear fraction • f (z) = (z − 2)/(z + 2) (Zhukovsky) Series Conclusions Introduction Colorful Functions Table of Contents Introduction ’Colorful’ plots Discussion of some functions Function series Conclusions Series Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 n= zk k! = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=0 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=1 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=2 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=3 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=4 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=5 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=6 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=7 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=8 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n=9 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n = 10 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of exp • Tn (z) = n P k=0 zk k! n = 11 = 1 + z + 12 z 2 + 1 3 3! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n= 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n=0 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n=1 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n=2 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n=3 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n=4 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n=5 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n=6 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Taylor series of sin • Tn (z) = n P k=0 (2k+1) z =z− (−1)k (2k+1)! n=7 1 3 3! z + 1 5 5! z + ... Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Series Another series of functions • M0 (z) = z Mn+1 (z) = (Mn (z))2 + z Conclusions Introduction Colorful Functions Table of Contents Introduction ’Colorful’ plots Discussion of some functions Function series Conclusions Series Conclusions Introduction Colorful Functions Series Conclusions • A small (non-complete) discussion of complex functions • Idea and validity of ’colorful’ visualization • No implementation known with different colorings available and easy to use • Matlab implementation, Gabor transforms • Exam , Conclusions Introduction Colorful Functions Series Conclusions • A small (non-complete) discussion of complex functions • Idea and validity of ’colorful’ visualization • No implementation known with different colorings available and easy to use • Matlab implementation, Gabor transforms • Exam , Conclusions Introduction Colorful Functions Series Conclusions • A small (non-complete) discussion of complex functions • Idea and validity of ’colorful’ visualization • No implementation known with different colorings available and easy to use • Matlab implementation, Gabor transforms • Exam , Conclusions Introduction Colorful Functions Exam – Question 1 Series Conclusions Introduction Colorful Functions Exam – Question 1 Logarithm f (z) = log z Series Conclusions Introduction Colorful Functions Exam – Question 2 Series Conclusions Introduction Colorful Functions Series Conclusions Exam – Question 2 A polinomial of degree five with one root of multiplicity two and three roots of multiplicity one 3 3 i)(z + 1 − 10 i) f (z) = i(z − i)2 (z + i)(z − 1 − 10 Introduction Colorful Functions Exam – Question 3 Series Conclusions Introduction Colorful Functions Exam – Question 3 Tangent f (z) = sin z/ cos z Series Conclusions Introduction Colorful Functions Exam – Question 4 Series Conclusions Introduction Colorful Functions Series Exam – Question 4 A polinomial√of degree three √ f (z) = (z − i)(z − 23 + 12 i)(z + 23 + 12 i) Conclusions Introduction Colorful Functions Exam – Question 5 Series Conclusions Introduction Colorful Functions Series Conclusions Exam – Question 5 A function with a zero of multiplicity one and a pole of order two f (z) = 1/z 2 − iz Introduction Colorful Functions Exam – Question 6 Series Conclusions Introduction Colorful Functions Exam – Question 6 f (z) = exp cos z Series Conclusions Introduction Colorful Functions Exam – Question 6 f (z) = exp cos z Series Conclusions Introduction Colorful Functions What are these? Series Conclusions Introduction Colorful Functions Series References • See WWW • References on my homepage (as soon as it’s translated and broken links are fixed) Conclusions Introduction Colorful Functions Series Colorful visualization of complex functions Author: Occasion: Web: E-mail: Levente Lócsi NuHAG Seminar Vienna, April 8, 2011 http://locsi.web.elte.hu/complex/ [email protected] Conclusions
© Copyright 2025 Paperzz