MONTE CARLO SIMULATIONS ON NEUTRON TRANSPORT AND ABSORBED DOSE IN TISSUE-EQUIVALENT PHANTOMS EXPOSED TO HIGH-FLUX EPITHERMAL NEUTRON BEAMS G. Bartesaghi, G. Gambarini, A. Negri Department of Physics of the University of Milan and INFN, Milan, Italy J. Burian, L. Viererbl Department of Reactor Physics, Nuclear Research Institute Rez, Czech Republic G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Outline • Boron Neutron Capture Therapy (BNCT): a brief introduction • Dosimetry and treatment planning in BNCT • NRI-Rez BNCT facility • Materials & Method: •MC simulations: source and phantoms description • Fricke gel dosimeters • Results and conclusions G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Boron Neutron Capture Therapy Boron selectively accumulated in tumor cells Neutrons from nuclear reactors 10B (n,)7Li ( = 3837 b) Gamma 10B 1n 11B* 7Li 4He (477 keV) Emission of low range, high LET ions: 4He2+ (1.47 MeV) 7Li3+ (0.84 MeV) with a range in tissue about one cell diameter. G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Dosimetry in BNCT What has to be measured? Dtot II DB + Dp + Dn + D “therapeutic dose”, from 10B(n,)7Li = 3837 b from 14N(n,p)14C Ep= 630 keV = 1.9 b due to epithermal and fast neutron scattering mainly on H nuclei from 1H(n,γ)2H Eγ = 2.2 MeV and reactor background = 0.33 b High complexity: four components, each with different LET and different RBE !!! G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Three distinct modules are necessary: - dosimetry with an appropriate phantom - Monte Carlo based treatment planning (TP) - 10B concentration on-line monitoring Treatment planning in BNCT Reactor geometry Patient anatomical images Boron concentration TP software should be capable to display isodose curves, superimposed to the anatomical images G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 BNCT facility at NRI – Rez (Prague) LVR-15 reactor Nuclear reactor power: Epithermal column 9 MW Epithermal neutron flux: 7∙108 cm-2 s-1 G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Thermal neutrons: < 0.4 eV Epithermal neutrons: 0.4 eV < En < 10 keV Fast neutrons: > 10 keV G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Treatment room Control room G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Fixation mask 12 cm diameter collimator G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 MC calculations Radiation transport and interactions in tissue-equivalent phantoms - Neutron transport and thermalization - Boron dose - Neutron dose MCNP5 code Source plane technique (used with MacNCTPLAN): - energy distribution - radial distribution - divergence distribution G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Tissue equivalent phantoms Standard water phantom 50x50x25 cm3 Cylindrical waterequivalent phantom d: 16cm, h: 14cm G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Phantoms reproduced in MCNP5 -Neutron flux on the central plane - Boron dose in 0.5 cm3 cells - Neutron dose along the beam axis G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Fricke Gel dosimeters in form of layers Fricke solution + Xylenol Orange = radiochromic very good tissue equivalence thin layers (up to 3mm thick): • not affecting the in-phantom neutron transport • it is possible to modify the gel composition in order to achieve dose components separation Standard Gel -rays and fast neutrons (recoil-protons) Standard-Gel added with 10B (40 ppm) -rays, fast neutrons, and 7Li particles Gel like Standard-Gel made with heavy water -rays and fast neutrons (recoil-deuterons) G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Standard gel Boron Borated dose gel Boron dose Dose images (15x12 cm2) in the standard water phantom G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Thermal neutron flux Standard phantom 8 -1 -2 Flux (cm s ) 4x10 8 3x10 Fast neutron flux 8 2x10 8 4 8 7 4x10 7 3x10 -1 4 6 8 10 Depth 12 14 -8 (cm) -2 Flux (cm s ) 2 0 -4 Wid 0 th ( cm ) 1x10 7 2x10 Epithermal neutron flux 7 1x10 8 8 ) m 8 3x10 8 2x10 8 1x10 ) h (c m 0 2 4 6 8 -4 Dept 10 h (cm 12 14 -8 ) id t 0 8 4 W -1 -2 Flux (cm s ) W id t h 4x10 0 2 4 6 8 -4 Dept 10 h (cm 12 14 -8 ) (c 0 4 G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Thermal neutron flux Cylindrical phantom 8 8 3x10 Fast neutron flux 8 2x10 8 4 8 1x10 th ( 4 6 8 10 Depth 12 14 -8 (cm) 7 3x10 -1 -2 Flux (cm s ) 2 0 -4 Wid 0 7 4x10 cm ) -1 -2 Flux (cm s ) 4x10 7 2x10 Epithermal neutron flux 7 1x10 8 ) m W 8 3x10 8 2x10 8 1x10 8 (cm 10 ) -4 12 14 -8 ) m (c 0 h 2 4 6 Dep th idt 0 8 4 W -1 -2 Flux (cm s ) id t h 0 2 4 6 8 -4 Dept 10 h (cm 12 14 -8 ) (c 0 8 4x10 4 G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Boron dose distribution 14 12 Dose Rate (Gy/h) Gel data MC data Standard phantom 10 8 6 Cylindrical phantom 4 2 0 -8 -6 -4 -2 0 2 4 6 8 10 Width (cm) Transverse profiles at 3 cm depth G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Boron dose distribution 14 Gel data MC data Cylindrical phantom 12 Dose Rate (Gy/h) 2.75 cm 10 8 5.75 cm 6 4 8.75 cm 2 0 -8 -6 -4 -2 0 2 4 6 8 Width (cm) Transverse profiles at in the cylindrical phantom at different depths G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Boron dose distribution 14 Gel data MC 10 8 6 4 2 Cylindrical phantom 12 Dose rate (Gy/h) 12 Dose rate (Gy/h) 14 Standard phantom Gel data MC data 10 8 6 4 2 0 0 0 2 4 6 8 10 Depth (cm) 12 14 0 2 4 6 8 10 12 14 Depth (cm) In-depth on-axis profiles in the two phantoms G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Fast neutron and gamma doses separation (OD)st = α1Dγ + α2Dnp (OD)hw = α3Dγ + α4Dnd 0,45 0,40 Standard gel Heavy water gel f = Dnd/Dnp from Monte Carlo = 0.66±0.01 0,30 0,25 0,20 0,70 0,15 0,69 0,10 0 2 4 6 8 10 0,68 12 Depth (cm) Central profile in the standard water phanton. Dd / Dp (OD) 0,35 0,67 0,66 0,65 0 2 4 6 8 10 12 14 Depth (cm) G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 9 Gamma dose (gel) Gamma dose (TLD) Fast neutrons dose (gel) Fast neutrons dose (IC) 8 Dose rate (Gy/h) 7 6 5 4 3 2 1 0 0 2 4 6 8 10 12 14 Depth (cm) (1) Binns et al., Med Phys, 32 (12), 2005 Central profile in the standard water phantom. G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009 Conclusions • Neutron transport, boron dose and neutron dose in tissue-equivalent phantoms have been calculated • Boron and fast neutron doses have been measured by means of Fricke gel layers • The good agreement confirms the accuracy of the source model used for TP G. Bartesaghi, 11° ICATPP, Como, 5-9 October 2009
© Copyright 2026 Paperzz