In honor of Alexander F.H. Goetz Remote Estimation of Chlorophyll Content and Gross Primary Production in Crops. Anatoly A. Gitelson, Shashi Verma, Donald C. Rundquist, and Andres Vina University of Nebraska-Lincoln IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Objective To develop a quantitative technique for remote estimation of Chlorophyll Content and Gross Primary Production in agro-ecosystems IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Methods and Techniques IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Data: UNL Carbon Sequestration Project CO2 Fluxes: eddy covariance flux system and soil C stocks Radiation Fluxes: upwelling and downwelling above and under canopy Biomass: total and green components of leaves, stems and reproductive organs LAI: total and green components Plant height, phenological development Temperature, precipitation, soil moisture IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Data: UNL Carbon Sequestration Project Leaf Level • CO2 Fluxes • Reflectance 400-900 nm - Ocean Optics radiometer attached to leaf clip • Pigment content and composition - analytical technique - non-destructive technique (Gitelson & Merzlyak, 1994) IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Data: UNL Carbon Sequestration Project Community Level • Reflectance 400-900 nm Dual-fiber Ocean Optics radiometers • Vegetation fraction Video camera imagery: ‘Excess Green’ technique to retrieve VF • Temperature Rundquist et al., 2004 IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Data: UNL Carbon Sequestration Project Field Level Radiance & Reflectance Imagery 440- 850 nm AISA Hyperspectral Imaging System IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Sampling Areas for Close-Range Hyperspectral Measurements 3a 3 Irrigated continuous maize Rain fed maize/soybean rotation Irrigated maize/soybean rotation Sampling ~ 20 m 3a – Bt Maize 3 – Non Bt Maize 2001 18 campaigns 2002 31 campaigns 2003 36 campaigns 2004 35 campaigns 2005 32 campaigns IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Gross Primary Production IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz GPP ∝ fAPAR×PAR×LUE GPP is a function of • the efficiency of the leaf light-harvesting apparatus (fAPAR) • amount of PAR captured by plant APAR = PAR×fAPAR • the capacity of plant to utilize absorbed radiation (LUE) IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz GPP ∝ fAPAR×PAR×LUE GPP is a function of • the efficiency of the leaf light-harvesting apparatus (fAPAR) • amount of PAR captured by plant APAR = PAR×fAPAR • the capacity of plant to utilize absorbed radiation (LUE) IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz GPP ∝ fAPAR×PAR×LUE GPP is a function of • the efficiency of the leaf’s light-harvesting apparatus (fAPAR) • amount of PAR captured by plant APAR = PAR×fAPAR • the capacity of plant to utilize absorbed radiation (LUE) IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz 3.5 Vegetative Stage Maize Reproductive Stage 3.0 -2 -1 GPP (mg.m s ) Senescence Stage Is LUE constant? 2.5 2.0 1.5 1.0 0.5 2.0 0.0 0 500 15001.8 1000 -2 -1 APAR (mmol m s ) Reproductive Stage 1.6 GPP (mg m-2 s-1) GPP ∝ APAR*LUE Vegetative Stage 2000 Senescence Stage 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Soybean 0.0 0 500 1000 1500 2000 -2 -1 APAR (mmol m s ) IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz The Carnegie-Ames-Stanford Approach (CASA) GPP = NDVI×PAR×ε×g(T)×h(W) fAPAR LUE g(T) and h(W) are functions that account for effects of temperature and water stress Light use efficiency was assumed to be constant for individual biomes IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz GPP ∝ NDVI×PAR×LUE Light use efficiency is not constant per biome. 3.5 Soybean 2 R = 0.6514 Maize 2.5 sPRI ∝ LUE ? GPP vs. NDVI×PAR×sPRI 2 GPP (mg/m s) 3.0 2.0 1.5 1.0 R2 = 0.681 0.5 3.5 0.0 0 500 1000 3.0 1500 2000 R2 = 0.69 2.5 2 NDVI x PAR (mmol/m s) GPP (mg/m s) 2 Soybean Maize PRI is not a proxy of LUE for crops studied 2.0 1.5 1.0 0.5 R2 = 0.72 0.0 0 200 400 600 800 1000 2 NDVI x sPRI x PAR (mmol/m s) IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz LUE = GPP/APAR 0.003 LUE depends on ecosystem type, temperature, nutrients, water stresses, and leaf physiology 0.002 0.002 0.001 0.001 0.000 -0.001 -0.001 -0.002 Irrigated and rainfed maize 2001-2003 -0.002 120 140 160 180 200 220 240 260 DOY Uncertainty in LUE assessment is a primary source of error in GPP estimates for crops 280 Light Use Efficiency (mg/mmol) Light Use Efficiency (mg/mmol) Temporal behavior of LUE 0.002 0.002 300 0.001 0.001 0.000 -0.001 -0.001 Irrigated and rainfed soybean 2002 -0.002 120 140 160 180 200 220 240 260 280 DOY IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz GPP ∝ fAPAR×LUE×PAR ∝ Chl fAPAR depends on the amount of photosynthetically active biomass, the primary source of variability in chlorophyll Chlorophyll is an indicator of the capacity of the plant to utilize absorbed radiation Our hypothesis: in crops, fAPAR×LUE is closely related to total chlorophyll content GPP ∝ Chl×PAR IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz GPP vs. Chl×PAR Irrigated and rainfed maize and soybean 3.5 Maize GPP (mg/m2s) 3.0 Soybean 2.5 2.0 1.5 2 1.0 2 RMSE = 0.242 mg/m s, R =0.98 0.5 0.0 0 1000 2000 3000 4000 5000 6000 7000 8000 Total Crop Chl (g/m2) x PAR (mmol/m2s) Total Chl = LAI×Chlleaf IGARSS’06, August 2, 2006, Denver Gitelson et al, JGR, Atm., 2006 Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz To estimate remotely GPP in crops one should find a way to accurately retrieve chlorophyll content from remotely sensed data IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Algorithm Development IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Pigment Content Estimation Leaf level R-1(λ) ∝ [αp (λ) + α0(λ)]/bb Cp ∝ α pigm (λ1 ) ∝ [ R (λ1 ) − R (λ2 )]R (λ3 ) −1 −1 Chlorophyll: Gitelson and Merzlyak, 1994, 1996; Gitelson, et al., 2003 Anthocyanin: Gitelson et al., 2001 Carotenoids: Gitelson et al., 2002 Flavonoids: Merzlyak et al., 2004 IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Chlorophyll Content Estimation Leaf level 600 Chlorophyll Estimate 500 R2 = 0.9622 400 300 200 100 [(R700)-1 - (RNIR)-1]*RNIR 0 0 100 200 300 400 500 600 700 800 900 Total chlorophyll content, μmol/m2 Gitelson and Merzlyak, 1994 IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Canopy, community, field levels [(ρgreen)-1-(ρNIR)-1]ρNIR ∝ Chl [(ρred edge)-1-(ρNIR)-1]ρNIR ∝ Chl Gitelson, Viña, Ciganda, Rundquist, Arkebauer, Geophys. Res. Lett., 2005 IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Maize: canopy community and field levels Chl ∝ [(ρgreen)-1-(ρNIR)-1]ρNIR Chl ∝ [(ρred edge)-1-(ρNIR)-1]ρNIR (RNIR/Rred edge)-1 & (RNIR/Rgreen)-1 14 Irrigated and rainfed maize, 2001-2003 12 Green and NIR bands 10 R2 = 0.9185 8 6 R2 = 0.9173 4 Red Edge and NIR 2 0 0.0 1.0 2.0 3.0 4.0 5.0 Total Chlorophyll, g/m2 Gitelson, Viña, Ciganda, Rundquist, Arkebauer, Geophys. Res. Lett., 2005 IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Soybean: canopy community and field levels Chl ∝ [(ρgreen)-1-(ρNIR)-1]ρNIR Chl ∝ [(ρred edge)-1-(ρNIR)-1]ρNIR (RNIR/Rred edge)-1 & (RNIR/Rgreen)-1 14 Irrigated and rainfed soybean, 2002 12 Green and NIR bands R2 = 0.9132 10 8 6 Red Edge and NIR 4 R2 = 0.9405 2 0 0.0 0.5 1.0 1.5 2.0 2.5 Total Chlorophyll, g/m2 Gitelson, Viña, Ciganda, Rundquist, Arkebauer, Geophys. Res. Lett., 2005 IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Having an accurate proxy of chlorophyll content in a crop canopy, we can estimate Gross Primary Production GPP ∝ Chl×PAR IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Model Calibration RMSE = 0.30 mg/m2s 2 R = 0.9053 20000 GPP ∝ Chl×PAR 15000 10000 MODIS Bands 5000 Soybean 0 0.0 0.5 1.0 1.5 2.0 GPP (mg/m2s) Maize 2.5 3.0 [(RNIR/Rgreen )-1] x PAR (mmol/m2s) [(RNIR/Rgreen )-1] x PAR (mmol/m2s) 25000 12000 RMSE = 0.20 mg/m2s 10000 2 R = 0.8943 8000 6000 4000 2000 0 0.0 Gitelson et al., JGR, 2006 IGARSS’06, August 2, 2006, Denver 3.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 GPP (mg/m2s) Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Model Validation MODIS Green and NIR Bands 3.0 Frequency 2.5 2 0.20 0.15 0.10 0.05 9 >1 0 00 <10 0 -9 0 -7 0 -5 0 -3 0 -1 0 50 70 0.00 2.0 10 30 Predicted GPP (mg/m s) 0.25 Residuals (%) 1.5 1.0 2 RMSE=0.284 mg/m s 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Observed GPP (mg/m2s) Irrigated and rainfed maize IGARSS’06, August 2, 2006, Denver Gitelson et al., JGR, 2005 Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Model Validation MERIS Red Edge and NIR Bands 9 >1 0 00 <10 0 -9 0 -7 0 -5 0 -3 0 -1 0 10 30 50 2.0 0.30 0.25 0.20 0.15 0.10 0.05 0.00 70 Frequency 2.5 2 Predicted GPP (mg/m s) 3.0 Residuals (%) 1.5 RMSE=0.267 mg/m2s 1.0 0.5 D 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Observed GPP (mg/m2s) Irrigated and rainfed maize IGARSS’06, August 2, 2006, Denver Gitelson et al., JGR, 2005 Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Field Level July 2, 2003 GPP retrieved from AISA imagery Maize irrigated IGARSS’06, August 2, 2006, Denver Maize rainfed Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz GPP retrieved from AISA imagery in MODIS and MERIS bands Maize Soybean June 21 July 12 July 15 (RNIR/Rgreen-1) & (RNIR/Rred edge-1) May 3 3.5 MODIS MERIS 3.0 2.5 y = 0.4458x + 0.6661 R2 = 0.964 2.0 1.5 1.0 y = 0.5168x + 0.1611 2 R = 0.9796 0.5 0.0 September 7 IGARSS’06, August 2, 2006, Denver 0 1 2 3 2 4 5 6 GPP (mg/m s) Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Conclusions • Chlorophyll content in crops is closely related to and may be used as an surrogate for GPP IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Conclusions • Chlorophyll content in crops is closely related to and may be used as an surrogate for GPP • A conceptual model, developed originally for pigment content retrieval in plant leaves, has been used to accurately estimate GPP in crops IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Conclusions • Chlorophyll content in crops is closely related to and can be use as an surrogate for GPP • Conceptual model, developed originally for pigment content retrieval in plant leaves, has been used to accurately estimate GPP in crops • Our results provide evidence that this model may be considered as a general solution for assessing pigment content in optically deep media, independent of the type of medium IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Chlorophyll in leaves Anthocyanins in leaves Gitelson & Merzlyak, 1994, 1997 Gitelson et al., 1996; 2003 Chl, Car, Anth & Flavonoids in fruits Merzlyak et al., 2003 IGARSS’06, August 2, 2006, Denver Carotenoids in leaves Gitelson et al., 2002 Gitelson et al., 2001 Chla in turbid productive waters Dall’Olmo & Gitelson, 2005 ; 2006 Total Chl and GPP in crops Gitelson et al., 2005 Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Acknowledgements • Center for Advanced Land Management Information Technologies (CALMIT) – UNL • Carbon Sequestration Program – UNL • NASA Land Cover Land Use Change Program • NASA EPSCoR (Airborne Remote Sensing) • NASA Nebraska Space Grant • NSF EPSCoR (Airborne Remote Sensing) • U. S. Department of Energy EPSCoR Program Office of Science (BER) IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz Thank you http://www.calmit.unl.edu/calmit.html [email protected] IGARSS’06, August 2, 2006, Denver Environmental Applications of Imaging Spectroscopy In honor of Alexander F.H. Goetz
© Copyright 2026 Paperzz