Transparent Passivating Contacts for c- Si Solar Cells

Transparent
Passivating
Contacts for cSi Solar Cells
Bas W. H. van de Loo
Bart Macco
Jimmy Melskens
Marcel A. Verheijen
Erwin Kessels
Cholistan Desert, Punjab, Pakistan
Quaid-e-Azam Solar Power Park (QASP)
2
Reliable, (>30 years),
Cheap, (<0.06 euro/kWh)
Efficient (>20 %)
87,000 panels
5,200,000
crystalline silicon
solar cells
(once completed)
3
• Solar cell:
1. Absorb as much light as possible
2. Convert the light to electrons and holes
eh+
Aluminum-Back Surface Field (Al-BSF)
Crystalline Silicon (c-Si) solar cell
PAGE 4
• Solar cell:
1. Absorb as much light as possible
2. Convert the light to electrons and holes
e-
e-
h+
eh+
h+
e-
Aluminum-Back Surface Field (Al-BSF)
Crystalline Silicon (c-Si) solar cell
PAGE 5
h+
• Solar cell:
1. Absorb as much light as possible
2. Convert the light to electrons and holes
3. Use carrier selective contacts
−
e-
e-
h+
eh+
h+
e-
h+
+
Aluminum-Back Surface Field (Al-BSF)
Crystalline Silicon (c-Si) solar cell
PAGE 6
I
• Solar cell:
1. Absorb as much light as possible
2. Convert the light to electrons and holes
3. Use carrier selective contacts
4. Prevent carrier-recombination as much as possible
−
e-
e-
h+
eh+
h+
e-
h+
+
Aluminum-Back Surface Field (Al-BSF)
Crystalline Silicon (c-Si) solar cell
PAGE 7
I
• Solar cell:
1. Absorb as much light as possible
2. Convert the light to electrons and holes
3. Use carrier selective contacts
4. Prevent carrier-recombination as much as possible
Passivated emitter rear cell (PERC)
e-
PAGE 8
e-
h+
eh+
h+
e-
h+
Passivated emitter rear cell (PERC)
~17-20 %
PAGE 9
20-22.6 %
• PERC: Surface passivation!
Passivated emitter rear cell (PERC)
~17-20 %
PAGE
10
20-22.6 %
Cleanroom, TU Eindhoven
11
courtesy B. van Overbeeke
246 nm
102 nm
12
• Solar cells:
PAGE
13
Aluminum back-surface
Field (Al-BSF)
Passivated emitter rear
cell (PERC)
~17-20 %
20-22.6 %
surface passivation
conductivion
carrier selectivity
transparent
low contact resistance
Aluminum back-surface
Field (Al-BSF)
Passivated emitter rear
cell (PERC)
~17-20 %
20-22.6 %
Bifacial passivating
contact cell
Tunnel oxide
Target >24 %
ZnO, TiO2, In2O3:Sn..?
PAGE
14
c-Si(p)
1.
2.
3.
4.
5.
• Solar cells:
15
16
17
1.
2.
3.
4.
5.
18
surface passivation
conduction
carrier selectivity
transparent
low contact resistance?
Take home messages:
• Modern solar cells are based on nanotechnology
• Atomic layer deposition:
- outstanding control over composition,
electronic and optical properties of thin films,
- extremely uniform over large area’s.
• Many new applications in sight;
- from passivation to
transparent passivating contacts
Book chapter:
“Atomic layer deposition for high-efficiency c-Si solar cells,”
B. Macco, B. W. H. van de Loo and W. M. M. Kessels
ed. J. Bachmann, Wiley 2017
• Thank you for your attention
• Thank our project partners
20