Transparent Passivating Contacts for cSi Solar Cells Bas W. H. van de Loo Bart Macco Jimmy Melskens Marcel A. Verheijen Erwin Kessels Cholistan Desert, Punjab, Pakistan Quaid-e-Azam Solar Power Park (QASP) 2 Reliable, (>30 years), Cheap, (<0.06 euro/kWh) Efficient (>20 %) 87,000 panels 5,200,000 crystalline silicon solar cells (once completed) 3 • Solar cell: 1. Absorb as much light as possible 2. Convert the light to electrons and holes eh+ Aluminum-Back Surface Field (Al-BSF) Crystalline Silicon (c-Si) solar cell PAGE 4 • Solar cell: 1. Absorb as much light as possible 2. Convert the light to electrons and holes e- e- h+ eh+ h+ e- Aluminum-Back Surface Field (Al-BSF) Crystalline Silicon (c-Si) solar cell PAGE 5 h+ • Solar cell: 1. Absorb as much light as possible 2. Convert the light to electrons and holes 3. Use carrier selective contacts − e- e- h+ eh+ h+ e- h+ + Aluminum-Back Surface Field (Al-BSF) Crystalline Silicon (c-Si) solar cell PAGE 6 I • Solar cell: 1. Absorb as much light as possible 2. Convert the light to electrons and holes 3. Use carrier selective contacts 4. Prevent carrier-recombination as much as possible − e- e- h+ eh+ h+ e- h+ + Aluminum-Back Surface Field (Al-BSF) Crystalline Silicon (c-Si) solar cell PAGE 7 I • Solar cell: 1. Absorb as much light as possible 2. Convert the light to electrons and holes 3. Use carrier selective contacts 4. Prevent carrier-recombination as much as possible Passivated emitter rear cell (PERC) e- PAGE 8 e- h+ eh+ h+ e- h+ Passivated emitter rear cell (PERC) ~17-20 % PAGE 9 20-22.6 % • PERC: Surface passivation! Passivated emitter rear cell (PERC) ~17-20 % PAGE 10 20-22.6 % Cleanroom, TU Eindhoven 11 courtesy B. van Overbeeke 246 nm 102 nm 12 • Solar cells: PAGE 13 Aluminum back-surface Field (Al-BSF) Passivated emitter rear cell (PERC) ~17-20 % 20-22.6 % surface passivation conductivion carrier selectivity transparent low contact resistance Aluminum back-surface Field (Al-BSF) Passivated emitter rear cell (PERC) ~17-20 % 20-22.6 % Bifacial passivating contact cell Tunnel oxide Target >24 % ZnO, TiO2, In2O3:Sn..? PAGE 14 c-Si(p) 1. 2. 3. 4. 5. • Solar cells: 15 16 17 1. 2. 3. 4. 5. 18 surface passivation conduction carrier selectivity transparent low contact resistance? Take home messages: • Modern solar cells are based on nanotechnology • Atomic layer deposition: - outstanding control over composition, electronic and optical properties of thin films, - extremely uniform over large area’s. • Many new applications in sight; - from passivation to transparent passivating contacts Book chapter: “Atomic layer deposition for high-efficiency c-Si solar cells,” B. Macco, B. W. H. van de Loo and W. M. M. Kessels ed. J. Bachmann, Wiley 2017 • Thank you for your attention • Thank our project partners 20
© Copyright 2026 Paperzz