Assignment V 11 Construct orthogonal polynomial of degree 0, 1, 2 on the interval (0, 1) with the weight function w(x) = − ln x Ans: p0 (x) = 1 and p1 (x) = x − a1 where R ∞ −2t R1 te dt < xp0 , p0 > 1 Γ(2) 1 0 − ln(x) x dx a1 = = R0∞ −t = = R1 = , < p0 , p0 > 4 Γ(2) 4 te dt − ln(x) dx 0 0 where we have used x = e−t and Γ(p) = R∞ 0 e−t tp−1 dt and Γ(p + 1) = pΓ(p) and Γ(1) = 1. Hence p1 (x) = x − 1/4. Now p2 (x) = (x − a2 )p1 (x) − b2 p0 (x), where R1 − ln(x) x(x − 1/4)2 dx < xp1 , p1 > Γ(2)/16 − Γ(2)/18 + Γ(2)/64 13/576 13 a2 = = R0 1 = = = , < p1 , p1 > Γ(2)/9 − Γ(2)/8 + Γ(2)/16 7/144 28 − ln(x)(x − 1/4)2 dx 0 < xp1 , p0 > b2 = = < p0 , p0 > R1 0 − ln(x) x(x − 1/4) dx Γ(2)/9 − Γ(2)/16 7/144 = = = 7/144, R1 Γ(2) 1 0 − ln(x) dx Hence p2 (x) = (x − 13/28)(x − 1/4) − 7/144 = x2 − 5x/7 + 17/252 14 The Lagurre polynomials are orthogonal in the interval (0, ∞) with respect to the weight function w(x) = e−x . Find the first four Lagurre polynomials such that the coefficient of the leading term of φk (x) is (−1)k /k!. Ans: p0 (x) = 1 and p1 (x) = x − a1 where R ∞ −x xe dx Γ(2) < xp0 , p0 > = R0 ∞ −x = = 1, a1 = < p0 , p0 > Γ(1) e dx 0 Hence p1 (x) = x − 1. Now p2 (x) = (x − a2 )p1 (x) − b2 p0 (x), where R∞ x(x − 1)2 e−x dx Γ(4) − 2Γ(3) + Γ(2) < xp1 , p1 > = a2 = = 0 R∞ =3 2 dx < p1 , p1 > Γ(3) − 2Γ(2) + Γ(1) (x − 1) 0 R∞ x(x − 1)e−x dx Γ(3) − Γ(2) < xp1 , p0 > b2 = = 0 R ∞ −x = =1 < p0 , p0 > Γ(1) dx 0 e Hence p2 (x) = (x − 3)(x − 1) − 1 = x2 − 4x + 2. Similarly, we find p3 (x) = x3 − 9x2 + 18x − 6. Now the Lagurre polynomials Lk (x) have leading coefficient (−1)k /k!. Hence, L0 (x) = 1, L1 (x) = −x + 1, L2 (x) = (x2 − 4x + 2)/2, L3 (x) = (−x3 + 9x2 − 18x + 6)/6 15 The Hermite polynomials are orthogonal in the interval (−∞, ∞) with respect to the weight 2 function w(x) = e−x . Find the first four Hermite polynomials such that the coefficient of the leading term of φk (x) is 2k . Ans: p0 (x) = 1 and p1 (x) = x − a1 where R∞ 2 xe−x dx < xp0 , p0 > = R−∞ = 0. a1 = ∞ −x2 < p0 , p0 > dx −∞ e Hence p1 (x) = x. Now p2 (x) = (x − a2 )p1 (x) − b2 p0 (x), where R ∞ 3 −x2 x e dx < xp1 , p1 > a2 = = R−∞ = 0. ∞ 2 2 −x dx < p1 , p1 > −∞ x e R ∞ 2 −x2 R ∞ 3/2−1 −t dx t e dt Γ(3/2) < xp1 , p0 > 1 −∞ x e b2 = = R ∞ −x2 = = R0∞ 1/2−1 −t = < p0 , p0 > Γ(1/2) 2 e dt dx 0 t −∞ e Hence p2 (x) = x2 − 1/2. Similarly, we find p3 (x) = x3 − 3x/2. Now the Hermite polynomials Hk (x) have leading coefficient 2k . Hence, H0 (x) = 1, H1 (x) = 2x, H2 (x) = 4x2 − 2, H3 (x) = 8x3 − 12x.
© Copyright 2026 Paperzz