Modeling and Throughput Analysis for SMAC Ou Yang 4-29-2009 Outline Motivation and Background Methodology - 1-D Markov Model for SMAC without retx - 2-D Markov Model for SMAC with retx Throughput Analysis - 1-D Markov Model for SMAC without retx - 2-D Markov Model for SMAC with retx Model Validation Conclusions 2 Motivation Good to know the performance of SMAC - sleep at MAC layer or not? - which duty cycle should be chosen? No analytical model for SMAC - quantitative estimation of throughput - throughput under different scenarios 3 Background – SMAC Protocol Duty-cycled MAC to reduce idle listening - fixed active period in a cycle - variable sleep period in a cycle - duty cycle = active period / cycle length 4 Background – SMAC Protocol Synchronization - SYNC pkt carries sleep-awake schedule - broadcast SYNC pkt Medium access - RTS/CTS/DATA/ACK - carrier sensing ( virtual + physical ) - fixed contention window size 5 Background – SMAC Protocol Reasons of packet loss (ideal channel) - SMAC without retx: RTS failed - SMAC with retx: retx over limit - queue overflow 6 Methodology Assumptions - packet arrive independently - finite FIFO queue at each node - channel is ideal no hidden terminals no capture effects no channel fading 7 Methodology 1-D Markov Model for SMAC without retx 0 pkts in the 1 pkts queue in the2 queue pkts in the queue Maximum Q pkts in the queue 8 Methodology 1-D Markov Model for SMAC without retx 9 Methodology 0 1 Example of the 1-D Markov Model 2 Transition Matrix P P0,0 A0 P0,1 A1 P0, 2 A 2 P1, 0 p A0 P1,1 p A1 (1 p ) A0 P1, 2 p A 2 (1 p) A1 P2, 0 0 P2,1 p A0 P2, 2 p A1 (1 p) A0 known Ai is the probabilit y of i pkt arrivals in a cycle Ai is the probabilit y of no less than i pkt arrivals in a cycle p is the probabilit y of winning the contention unknown 10 Methodology 1 pkt in the queue Q pkts in the queue 2-D Markov Model for SMAC with retx Retx stage 0 Retx stage 1 Retx stage R 11 Methodology 0,0 Example of the 2-D Markov Model 0,0 0,1 P( 00, 00) A0 P( 00, 01) A1 P( 00, 02) A 2 P( 01,00) ps A0 P( 01,01) ps A1 (1 p) A0 P( 01,11) p f A0 0,2 P( 02,01) ps A0 P( 02, 02) ps A1 (1 p) A0 0,1 0,2 1,1 1,2 2,1 2,2 P( 01, 02) ps A 2 (1 p) A1 P( 01,12) p f A1 P( 02,12) p f A0 Ai is the probabilit y of i pkt arrivals in a cycle Ai is the probabilit y of no less than i pkt arrivals in a cycle ps is the probabilit y of sucessfull y txing a DATA packet p f is the probabilit y of tx failure of a DATA packet p is the probabilit y of winning the contention , p p s p f 12 Methodology 0,0 Example of the 2-D Markov Model 1,1 P(11,00) ps A0 0,1 0,2 1,1 1,2 2,1 2,2 P(11, 01) ps A1 P(11, 02) ps A 2 P(11,11) (1 p) A0 P(11,12) (1 p) A1 P(11, 21) p f A0 P(11, 22) p f A1 P(12,01) ps A0 P(12,02) ps A1 1,2 P(12,12) (1 p ) A0 P(11, 22) p f A0 13 Methodology 0,0 Example of the 2-D Markov Model 2,1 P( 21, 00) p A0 P( 21, 01) p A1 P( 21, 02) p A 2 P( 21, 21) (1 p) A0 P( 21, 22) (1 p ) A1 P( 22, 01) p A0 P( 22, 02) p A1 0,1 0,2 1,1 1,2 2,1 2,2 2,2 P( 22, 22) (1 p) A0 14 Throughput Analysis Definition of throughput THRsys N (1 emptyQ ) ps S / T Solve 2 variables! N is the number of nodes in the neighborho od emptyQ is the stationary probabilit y of the empty queue state ps is the probabilit y of successful ly txing a DATA packet S is the the MAC layer DATA packet size T is the length of a cycle 15 Throughput Analysis – 1-D Markov Model According to the Markov Model - stationary distribution: P - p is the only unknown variable in P - curve emptyQ 0 f ( p ) Assume each node behaves independently - prob. of 1 0 to contend the media in a cycle - randomly select a backoff window in [0,W-1] - curve p g ( 0 ) 16 Throughput Analysis – 1-D Markov Model 0 p 17 Throughput Analysis – 1-D Markov Model Intersections of 0 f ( p) and p g ( 0 ) - ( p , 0 ) - 0 is obtained To solve ps similar to p g ( 0 ) Assume each node behaves independently - prob. of 1 0 to contend the media in a cycle - randomly select a backoff window in [0,W-1] - p s h( 0 ) - p s h( ) 0 18 Throughput Analysis – 2-D Markov Model According to the Markov Model - stationary distribution: P - ps and p f are unknown variables in P - surface emptyQ ( 0,0) F ( ps , p f ) Assume each node behaves independently - prob. of 1 ( 0, 0) to contend the media in a cycle - randomly select a backoff window in [0,W-1] - curve ( ps , p f ) (h( ( 0,0) ), g ( ( 0,0) ) h( ( 0,0) )) H ( ( 0,0) ) 19 Throughput Analysis – 2-D Markov Model ( ps , p f , ( 0 , 0 ) ) is obtained! 20 Model Validation Varying the number of nodes 21 Model Validation Varying the queue capacity 22 Model Validation Varying the contention window size 23 Model Validation Varying the data arrival rate 24 Discussions Effects of retransmissions - not obvious difference in throughput - extra traffic at the head of the queue Reasons - saturation: no improvement - far from saturation: trivial improvement - close to saturation: some improvement 25 Conclusion 1-D Markov Model to describe the behavior of SMAC without retx 2-D Markov Model to describe the behavior of SMAC with retx Models well estimate the throughput of SMAC Application - estimate throughput - optimize the parameters of SMAC - trade off throughput and lifetime 26 Thank you Q&A 27 Methodology 0 1 Example of the 1-D Markov Model 2 Transition Matrix P P0,0 A0 P0,1 A1 P0, 2 A 2 P1, 0 p A0 P1,1 p A1 (1 p ) A0 P1, 2 p A 2 (1 p) A1 P2, 0 0 P2,1 p A0 P2, 2 p A1 (1 p) A0 known Ai is the probabilit y of i pkt arrivals in a cycle Ai is the probabilit y of no less than i pkt arrivals in a cycle p is the probabilit y of winning the contention unknown 28 Background – Markov Model Markov model of IEEE 802.11 29
© Copyright 2026 Paperzz