Weathering Sources in the Kaoping River Catchment, Southwestern Taiwan: Insights From Major and Trace Elements, Sr Isotopes and Rare Earth Elements C.-F. You, K.-F. Huang, C.-H. Chung and R.-M. Wang Department of Earth Sciences Also at Earth Dynamic System Research Center National Cheng Kung University Ching et al., 2007 Liu et al., 2007 Outlines • Sr isotopes Non-conventional high precision Sr isotopic measurement • Major and trace elements • REEs Strontium Isotopes: 84Sr (0.56 %) 87Sr (6.99 %) 87Rb 86Sr (9.86 %) 88Sr (82.54 %) 87Sr+β -+anti-neutrino+energy (t1/2=4.88× 1010years) Geological Applications: 1. Geo-chronometer: Rb-Sr dating Seawater curve 2. 87Sr/86Sr Tracer: a. River water --- weathering process b. Sediments--- provenance and transportation c. Biogenic carbonate---seawater evolution 3. Environmental proxy SST or SSS Sr Isotopic Composition of Earth Systems Dissloved loa d in rivers 87 86 Sr/ Sr= 0.7119 Detrital loa d in rivers 87 Sr/ 86Sr= 0.7178 Mid -oc ean rid ge Hydroherm al c irc ula tion 87 86 Sr/ Sr= 0.7035 oc ea n sed im ent 87Sr/ 86Sr= 0.708 87 Sr/ 86Sr= 0.724 Dissolved load in river 0.7119 Detrital load in river 0.7178 Sediment 0.724 Seawater 0.708 Hydrothermal vent 0.7035 Oceanic crust 0.702 Geochemical Behaviors of Sr in the “Water World” 1. River water: (a) Reflect the Rb/Sr ratio and “age” of the source rocks; (b) Sources derived from silicate and carbonate weathering 2. Seawater: (a) Chemically and isotopically “uniform” because of its long residence time (~2 Ma); (b) Small but considerable regional difference in flux and ICs occurred on time-scales shorter than the residence time; (c) Non-conservative mixing in estuaries due to dynamic exchanges Oceanic Sr Budget 1, Steady or not? 2, How Sr ICs change with time? Total mass of Sr in seawater= 1.25×1017 mol (Assuming an average seawater concentration of 91.3 mM) After Basu et al., 2001 Sampling Sites Reference sites- ST-1 (NEC) and St-C (SCS) Sample Locality 121.0 26.0 121.5 122.0 122.5 123.0 26.0 April 119 122 121 120 123 26 26 Latitude (N) 25.5 25 25.5 25.0 25 SOT 25.0 1 2 7 3 4 5 6 24.5 24.5 TAIWAN 24.0 121.0 24 Lattitude (N) 24 121.5 122.0 24.0 123.0 122.5 Longitude (E) TAIWAN 119.5 120.0 120.5 121.0 23.0 23.0 TAIWAN 23 23 KPC 22 22 South China Sea China South 22.5 22.5 22.0 22.0 Lattitude (N) Aug. 715-2 Sea South China Sea 21.5 119 120 121 Longitude (E) 122 123 21.5 119.5 120.0 120.5 Longitude (E) 121.0 Modern Hydrography Typhoon Toraji WRA., 2003 Liang et al., 2003 Kao-Ping Canyon Sea Water Masses 35 Water mass Depth RW Kuroshio Temperature (oC) 30 0 NPTW 25 RW SCS NPTW SCS 100 m 20 100 200 SCS 400 15 200-300 m Kuroshio SCS Summer Winter 10 5 NPIW 32 600 1300 400-600 m NPDW PDW >1300 m 0 31 SCS NPIW 33 Salinity (psu) 34 bottom 35 Wang et al., 2002 High-Precision Sr Isotopic Measurement P- TIMS TRITON TI ORI 679_S6-10 m 4.50E+08 Sr- Elution Curve Colum n-1 4.00E+08 1. 0.709196±03 2. 0.709197±02 ORI 679_S3-10 m Colum n-2 Seawater 3.50E+08 Colum n-3 Intensity (cps) 3.00E+08 2.50E+08 Recovery> 99.5% 2.00E+08 1. 2. 1.50E+08 0.709195±03 0.709195±02 SB_09-12 (10.5 m) 1.00E+08 1. 2. 5.00E+07 0.00E+00 0.0 3N HNO3 5.0 8N HNO3 10.0 3N HNO3 15.0 0.05N HNO3 Eluted volum e (m L) 20.0 25.0 0.709195±03 0.709193±02 The surface distributions of Sr ICs in the KPE 119.5 120.0 120.5 121.0 23.0 23.0 Δ87Sr (ppm) TAIWAN 64 60 56 22.5 22.5 52 Lattitude (N) 48 44 40 36 32 22.0 22.0 28 24 20 16 South China Sea 12 21.5 21.5 119.5 120.0 120.5 Longitude (E) 121.0 After Typhoon Toraji Other Hydrographic Evidences 23 Ka op Ka opi ng ing Ch i Ch i 23 0.3 34.5 34.3 0.2 O-18 S 22 34.1 33.9 0.1 22 0.0 Aug. 2001 120 121 Aug. 2001 120 -0.1 121 -0.2 33.7 -0.3 33.5 -0.4 -0.5 33.3 23 32.5 31.5 22 (Lin et al., 2003) -0.7 -0.8 O-18 S 22 Aug. 2002 Aug. 2002 120 -0.6 Ka opi ng Ch i Ka opi ng Ch i 33.1 23 121 120 121 Surface Seawater Sr ICs vs. Salinity 70.0 EM-1 60.0 Δ87Sr= -39.11*S+1338.7 r2=0.80 Δ87Sr (ppm) 50.0 40.0 EM-2 30.0 20.0 9.3 ppm (33.99‰) Δ87Sr= -10.82*S+377.08 r2=0.70 10.0 2σ 0.0 31.00 Freshening 31.50 32.00 32.50 EM-3 33.00 33.50 34.00 Salinity (psu) EM-1: Most radiogenic Sr IC--- (1) intense water-sediment interaction caused by flood plume (2) release radiogenic Sr from silicates due to stronger erosion EM-2: Normal discharge of the Kao-ping river after heavy rainfalls Sr Isotopic Characteristics of the Taiwan River 121.0 26.0 121.5 122.0 122.5 123.0 26.0 Δ87Sr (ppm) 26 25.5 0.7170 25.5 48 0.7160 0.7140 Latitude (N) 0.7150 44 25.0 1 Tro 40 25.0 36 2 32 7 3 0.7130 24 O a aw kin h ug 4 5 6 28 0.7120 24.5 24.5 24 0.7110 20 0.7090 0.7080 0.7070 22 0.7060 119 120 121 122 123 TAIWAN 24.0 121.0 121.5 122.0 Longitude (E) 122.5 24.0 123.0 Mixing processes of the Water masses --- Evidence from the vertical profiles of the Sr ICs at the SOT 87 ST-1 Sr/86Sr S3 Sr/86Sr 0.70915 0.70915 0.70918 0.70920 0.70923 0.70925 0.70915 0.70918 0.70920 0.70923 0.70925 0 100 100 100 200 200 200 300 300 300 400 400 400 Depth (m) 500 600 700 NEC Depth (m) 0 0 Depth (m) 87 St-C 500 600 0.70920 0.70923 0.70925 SW NPTW S6 NPIW 700 700 800 900 900 900 1000 1000 1000 1100 Sr/86Sr 600 800 0.709176 0.70918 500 800 1100 87 SCS 0.709182 1100 Seawater Sr ICs is “not” isotopic uniform in the open ocean and marginal sea, but it seems to have a similar pattern in the same region. S1 SOT 0.709176 60 10 50 8 6 Ca (mM) Mg (mM) 40 30 4 st 1-Mg 20 st 1-Ca st 2-Mg st 2-Ca st 3-Mg 10 st 3-Ca 2 st 4-Mg st 4-Ca st 5-Mg st 5-Ca 0 0 0 50 100 150 200 250 Na (mM) 300 350 400 450 0 50 100 150 200 250 Na (mM) 300 350 400 450 100 600 12 6 st 1-B st 2-B st 3-B st 4-B st 5-B st 1-Ba st 2-Ba st 3-Ba st 4-Ba st 5-Ba 90 80 70 10 500 8 400 40 30 20 10 0 0 50 100 150 200 250 Na (mM) 300 350 400 450 B (μM) 6 300 4 3 4 200 2 2 100 1 0 0 0 0 50 100 150 200 250 Na (mM) 300 350 400 450 Ba (μM) st 1-Sr st 2-Sr st 3-Sr st 4-Sr st 5-Sr st 1-U st 2-U st 3-U st 4-U st 5-U 50 U (nM) Sr (μM) 60 5 0.7135 0.7135 Surface 0.7130 0.7120 0.7120 0.7115 0.7115 Sr/ 86Sr 0.7125 0.7125 0.7110 87 0.7105 0.7110 0.7105 0.7100 0.7100 0.7095 0.7095 0.7090 0.7090 0.7085 0.00 Bottom Bottom 87 Sr/ 86Sr 0.7130 Surface 0.7085 0.05 0.10 0.15 1/Sr (μM-1) 0.20 0.25 0.30 0 100 200 300 Cl (mM) 400 500 (b) (a) (c) Summary • High precision Sr isotopic measurement can be applied as a new sensitive tracer for studying water mass mixing near estuary • Rather large variation in D87Sr, >60 ppm, was detected in the Kao-ping estuary and possibly were affected by flood plume, river discharge and surface seawater mass • Vertical seawater Sr ICs is “not” isotopic uniform in the open ocean and marginal sea • Dynamic exchange among freshwater, groundwater and seawater are occurring in the Kaoping River estuary and canyon Summary (continue) • High dissolved B and Sr in the Kaoping River emphasize the potential impact of mountainous island to the global oceanic chemical budget • The dissolved REE patterns of the Kaoping River at different tributaries show similar negative Ce anomaly and HREE enrichment • Strong positive Gd anomaly supports an anthropogenic pollution in the river. • The Sr isotopic variations are rather large, 0.712649~ 0.713592, and show systematically decreasing ratios with distance from the coastal region THANKS FOR YOUR ATTENTION EDSRC-NCKU, Taiwan
© Copyright 2026 Paperzz