AP Calculus Name: ____________________ Review Unit 1: Limits and Continuity SHOW ALL WORK! On the test, you will be required to show all of your work. The test will be divided into calculator and no calculator parts. This review is not comprehensive. Please look back over your notes, your homework, and your quizzes to help you study for the test. This review will count as part of your grade! Topics to study: 1. Limits graphically and numerically (using a table) 2. Limit Properties 3. Techniques for finding limits a. Trigonometry special limits b. factoring c. conjugate d. least common denominator 4. Infinite limits and vertical asymptotes 5. Limits at infinity and horizontal asymptotes 6. Continuity a. definition b. problems using continuity 7. Intermediate Value Theorem Use the graphs to find each limit, if it exists for problems 1-10. 1. 2. 3. 4. lim ( f ( x) g ( x)) x2 6. f ( x) g ( x) 7. lim 3 f ( x) 8. lim x 3 f ( x) 9. lim g ( x) 10. lim x 1 x 1 x1 lim x 2 f ( x) g ( x) lim f ( g ( x)) x 2 x2 5. lim g ( x) x 1 lim 2 f ( x) g ( x) x 1 lim f ( x ) x 2 _______________________________________________________________________________________________________________________________________ Find each limit, if it exists. Add a basic substitution 11. lim h0 h4 2 h sin( 3 x) x 0 x 14. lim 17. 3 lim 2 x 4 ( x 4) 12. lim x27 3 x2 15. x lim sec x 2 3 18. x 2 4 x 12 lim x2 x2 4 13. 2 x 2 3x ,x0 lim f ( x) if f(x) x x 0 x 3, x 0 16. 19. 2 x sin 3x x 0 x lim 1 1 lim 2 x 2 x 0 x 20. lim x0 sin x sin x cos x 3x 2 21. lim x 7 x2 3 x7 22. lim ( x 6) 2 3 x 2 _______________________________________________________________________________________________________________________________________ 23. Sketch a graph for each function and find all vertical asymptotes. Using the calculus definition, how do you know these are the vertical asymptotes? (A) g ( x) 3 3x 6 (B) g ( x) 1 x 22 (C) g ( x) x 2 5 x 24 2 x2 5x 3 (no graph needed for part c) _______________________________________________________________________________________________________________________________________ 24. Calculator allowed. Sketch the graph from your calculator. (A) lim cot x (B) x lim sec x x 2 _______________________________________________________________________________________________________________________________________ 25. (A) lim 3x 2 x 5 x x2 4 (B) lim 3x 2 x 5 x x2 4 (C) identify all horizontal asymptotes, if any for f ( x) 3x 2 x 5 x2 4 26. (A) lim 6 x3 4 x 8 x x2 5 (B) lim 6 x3 4 x 8 x x2 5 (C) identify all horizontal asymptotes, if any for g ( x) 6 x3 4 x 8 x2 5 27. (A) lim 4x2 6x 1 x x3 4 (B) 4x2 6x 1 x x3 4 (C) identify all horizontal asymptotes, if any for g ( x) 4x 2 6x 1 x3 4 lim _______________________________________________________________________________________________________________________________________ 28. (A) Explain what it means to say that lim f x 3 and lim f x 7 . x 1 x 1 (B) In this situation, it is possible that lim f x exists? x 1 _______________________________________________________________________________________________________________________________________ Use the graph of g(x) to answer the following questions. 29. (A) lim g ( x) x 1 (D) Is g continuous at x = -1? (B) lim g ( x) x 1 (C) g ( 1) Explain why or why not. _____________________________________________________________________________ 30. (A) lim g ( x) x 3 (D) Is g continuous at x = 3? (B) lim g ( x) x 3 (C) g (3) Explain why or why not. ____________________________________________________________________________ 31. (A) lim g ( x) x 5 (D) Is g continuous at x = 5? (B) lim g ( x) x 5 Explain why or why not. (C) g (5) For problems 32-34, determine the value of a, b or c such that each function is continuous on 3x 2, x 5 f ( x) 2 x c, x 5 32. (, ) x 1, x 3 f ( x) 2cx,3 x 6 a( x 1) 2 4, x 6 2 33. 34. ax 3, x 5 f ( x) 8, x 5 x 2 bx 1, x 5 _______________________________________________________________________________________________________________________________________ 35. Find all horizontal asymptotes for the function f ( x) 4 7x 1 7x . ________________________________________________________________________________________________________________________ 36. If the function f is continuous for all real numbers and if x 2 11x 42 f ( x) when x -3 , x3 then find the value of f (3) . _______________________________________________________________________________________________________________________________________ x f(x) 37. Using the table , find 4.75 -2.5 4.9 -2.75 4.99 -2.92 4.999 -2.98 5 Undefined 5.001 -3.02 5.01 -3.03 5.1 -3.25 5.25 -3.5 lim f ( x) . x5 _______________________________________________________________________________________________________________________________________ 38. Let f be a function defined by x 2 2 x, for x 6 . Show that f f ( x) 2 x 12, for x 6 is continuous at x6 . ____________________________________________________________________________________________________________ 39. A function f is continuous on x f(x) If f has only one zero, -2 3 2 x 2 and some of the values of f 0 b are shown in the table. 2 4 z , on the closed interval 2 x 2 and z 0 , then a possible value of b is (A) -3 (B) -2 (C) -1 (D) 0 (E) 1 ____________________________________________________________________________________________________________ 40. The rate, in calories per minute, at which a person using an exercise machine burns calories is modeled by the function given in calories per minute. Selected values of f are given in the table. 0 4 12 16 20 24 t (minutes) 0 9 7 15 15 3 f (t ) Calories per minute Is there a time t , 12 t 16 , at which f (t ) 10 ? Justify your answer. f , where t is in minutes and f (t ) is
© Copyright 2026 Paperzz