4.2 Quadratics in Standard Form

Sketch the graph of each function given. Identify the vertex, domain and range, axis of symmetry, and
y-intercept. Tell how many x-intercepts the graph has.
1. y  x 2  4 x  1
2. y   x 2  2 x  3
9
8
7
6
5
4
3
2
1
-9 -8 -7 -6 -5 -4 -3 -2 -1
-2
-3
-4
-5
-6
-7
-8
-9
y
x
1 2 3 4 5 6 7 8 9
3. f  x   2 x2  6 x  7
9
8
7
6
5
4
3
2
1
-1
-9 -8 -7 -6 -5 -4 -3 -2
-2
-3
-4
-5
-6
-7
-8
-9
9
8
7
6
5
4
3
2
1
-9 -8 -7 -6 -5 -4 -3 -2 -1
-2
-3
-4
-5
-6
-7
-8
-9
y
x
1 2 3 4 5 6 7 8 9
4. y   x 2  4 x
y
x
1 2 3 4 5 6 7 8 9
9
8
7
6
5
4
3
2
1
-1
-9 -8 -7 -6 -5 -4 -3 -2
-2
-3
-4
-5
-6
-7
-8
-9
y
x
1 2 3 4 5 6 7 8 9
For 5 choose the best answer.
2
5. Which of the following could be the graph of y  a  x  h   k when a  0, h  0, k  0 ?
A.
B.
9 y
9 y
8
7
6
5
4
3
2
1
-9 -8 -7 -6 -5 -4 -3 -2 -1
-2
-3
-4
-5
-6
-7
-8
-9
x
1 2 3 4 5 6 7 8 9
C.
8
7
6
5
4
3
2
1
-9 -8 -7 -6 -5 -4 -3 -2 -1
-2
-3
-4
-5
-6
-7
-8
-9
x
1 2 3 4 5 6 7 8 9
D.
9
8
7
6
5
4
3
2
1
-9 -8 -7 -6 -5 -4 -3 -2 -1
-2
-3
-4
-5
-6
-7
-8
-9
y
x
1 2 3 4 5 6 7 8 9
9
8
7
6
5
4
3
2
1
-9 -8 -7 -6 -5 -4 -3 -2 -1
-2
-3
-4
-5
-6
-7
-8
-9
y
x
1 2 3 4 5 6 7 8 9
6. A small independent motion picture company determines the profit P for producing n DVD copies of a recent
release is P = 0.02n2 + 3.40n  16. P is the profit in thousands of dollars and n is in thousands of units.
a. How many DVDs should the company produce to maximize the profit?
b. What will the maximize profit be?
7. A local nursery sells a large number of ornamental trees every year. The owners have determined the cost
per tree C for buying and caring for each tree before it is sold is C = 0.001n2  0.3n + 50. In this function, C is
the cost per tree in dollars and n is the number of trees in stock.
a. How many trees will minimize the cost per tree?
b. What will the minimum cost per tree be?