The effects of size-resolved mineralogical composition on heterogeneous chemistry on dust particle surfaces Advisor: Prof. Irina N. Sokolik Gill-Ran Jeong The 4th Earth and Atmospheric Sciences Graduate Symposium, November 10th, 2006 The roles of dust aerosols in atmospheric chemistry Chemical effect O3, SO2, NO2, HNO3 Radiative effect Dust properties Direct impact Radiative radiative forcing at TOA radiative forcing at the sfc heating/cooling actinic flux Chemical heterogeneous chemistry on dust surface Indirect impact photolysis The role of heterogeneous reaction on dust aerosols in the chemistry-climate system •Size •Composition •Shape •Mixing with other aerosols such as BC, OC, sulfate, nitrate, and sea-salt O3 SO2 NO2 HNO3 Dust properties Direct impact Indirect impact Radiative radiative forcing at TOA radiative forcing at the sfc heating/cooling actinic flux cloud properties heterogeneous chemistry on dust surface photolysis Chemical Hygroscopic CCN Limitations of past studies and motivation of this study • • • • Size distributions commonly-known dust size distributions, a single mode size distribution, a few size bins [D’Almeida, 1987; Jaenicke et al., 1993; Kopke et al., 1997; Zhang et al., 1999; Liao et al., 2003; Bian and Zender, 2003; Tang et al., 2004; Bauer et al., 2004, 2005; Martin et al., 2003]. • • Uptake coefficients one uptake coefficient of a particular chemical element or mineral species based on laboratory measurement and modeling [Bauer et al., 2004, 2005; Zhang and Carmichael, 1999; Dentener et al., 1996; Bian and Zender, 2003; Martin et al., 2002, 2003; Liao et al., 2003, 2004; Usher et a;., 2002]. • • A mixture of mineralogy of dust Because the mineralogy of dust particles varies even though the similar chemical elements consist of dusts [Berry et al., 1983; Anthony ] The abundance of minerals also varies with dust source region or transportation or aging of dust [Glaccum and Prospero, 1980]. • The importance of size and compositions of mineral dust in modeling and measurement study. (Usher et al., 2002). Therefore, we need to construct size-resolved mineral composition of dust aerosols in order to investigate the effects of dust size distribution and compositions on the heterogeneous loss rates. Objectives 1. To construct size-resolved mineralogical composition of dust particles by selecting the range of mass fraction of the three main mineralogical compositions, particularly considering the alkalinity from carbonate-containing species and iron oxide contents in clay aggregates, pursuing consistent treatment of mineral dust aerosols in both chemistry and radioactive modeling. 2. To calculate heterogeneous loss rates on dust particles by integrating a gas-to-particle diffusion rate constant using the Fuchs-Sutugin approximation in the transition regime. The recent data on uptake coefficients of individual minerals and authentic dust and several dust size distributions reported from field and laboratory experiments were used. Goals of this study To investigate how size and mineralogical compositions of dust affect heterogeneous loss rates (khet) of gaseous species on particle surfaces and implication for the tropospheric photochemistry. Approach kj Mass transfer on dust particles and chemical properties of dust particles r2 F(r, γ )n(r)dr j r1 O3, SO2, NO2, HNO3 1. Alkalinity Uptake acidic gases 2. Adsorption: 4rD jV SO2 (g)+ O2- SO32F (r , ) SO2 (g)+ OH- HSO31 Kn f (Kn , j ) 3. Oxidation: SO32-(a)+ O3(g) SO42-(a)+ O2(g) HSO3-(a)+ O3(g) HSO4-(a)+ O2(g) 4. Solubility 2HNO3 + CaCO3 Ca(NO3)2 + H2O + CO2 (Krueger et al., 2003) changes in morphology, solubility, scattering Ni (log r log Ri )2 3 dN n(log r ) exp[ ] 2 d log r i 1 log 2 2 (log ) i i Approach The overall heterogeneous loss rates of a gaseous species j, kj O3 dust 1.5O2 L kj kp,j p 1 L is the number of types of mineral compounds. kp,j is the overall heterogeneous loss rate of gaseous species j on the surface of material compound p SO2 dust sulfate NO2 dust 0.5nitrite 0.5nitrate HNO3 dust nitrate r2 kp, j F(r,γ p.j )n p (r)dr r1 γp,j, : uptake coefficient of gaseous species j by mineral compound p np(r) is the size distribution of mineral compound p F(r, γp,j) is mass transfer coefficient whereby the Fuchs-Sutugin approximation is applied to the gas-to-particle diffusion in the transition regime. Iron-oxide clay aggregates Calcite (carbonate-containing minerals) Quartz: a non-absorbing and inactive mineral of gaseous uptake. Approach Type of size-resolved mineral composition of dust aerosols 1) Composition (uptake coefficient) REF (reference dust) 2) Size distribution 3) Mass fraction of mineralogical species BULK (bulk dust) 4) Mass partitioning of mineralogical species in fine and coarse modes 1 2 3 4 REF (khet_ref) X X BULK (khet_bulk) X X X FAC (khet_fac ) X X X X FAC (fine and coarse dust) 1) Uptake coefficients by main mineralogical compositions Table 1. Uptake coefficients (a )O3 dust 1.5O2 Mineral species or alternative chemical elements Kaolinite γ References 3.0 ± 1.0 × 10-5 Hanisch and Crowley, 2003 (Atmos. Chem. Phys.) Dentener et al., 1996 refer to Garland, 1974 usnig deposition velocity, γ = 4υdep/c Mitchel et al., 2002 (GRL) Mitchel et al., 2002 (GRL) Michel et al., 2003 (Atmos. Environ) Mitchel et al., 2002 (GRL) Michel et al., 2003 (Atmos. Environ) Calcite 1.0E-5 ~ 2.0E-4 (5.0 x 10-5) best guess SiO2 Saharan sand 5.0 ± 3.0 × 10-5 6.0 ± 3.0 × 10-5 Chinese loess 2.7 ± 0.9 × 10-5 (b ) SO2 dust sulfate Three main mineral groups Mineral species or Alternative chemical elements Clay aggregates Kaolinite Illite Montrollinite α-Al2O3 α-Fe2O3 Calcite Calcite Dolomite CaCO3 CaO MgO Quartz SiO2 Authentic dust α-Al2O3 α-Al2O3 CaCO3 SiO2 Saharan dust Chinese loess -4 1.6 ± 0.5 x 10 9.5 ± 0.3 x 10-5 ~ 1.0 x 10-4 1.4 ± 0.7 x 10-4 < 1 x 10-7 (3.9~4.6) x 10-3 (4.1~5.0) x 10-7 3.0 ± 1 x 10-5 Usher et al., 2002 (JGR) Goodman et al., 2001 (J. Phys. Chem.) Usher et al., 2002 (JGR) Usher et al., 2002 (JGR) Ullerstam et al., 2002 (Phys. Che. Chem. Phys.) Usher et al., 2002 (JGR) 1) Uptake coefficients by main mineralogical compositions Table 1. Uptake coefficients (c ) NO2 dust 0.5nitrite 0.5nitrate Mineral species or alternative chemical elements α-Al2O3 CaO SiO2 Saharan dust Chinese loess γ 9.1 x 10-6 8.5 x 10-5 2.2x10-5 5.4 x 10-5 Too low (4.0x10-10) RG*1.0 x 10-6 ~ 2.0 x 10-5 2.1 x 10-6 4.4 x 10-5 Three main mineral groups Mineral species or Alternative chemical elements Clay aggregates Kaolinite Illite Montrollinite α-Al2O3 α-Fe2O3 Calcite Calcite Dolomite CaCO3 CaO MgO Quartz SiO2 References Underwood et al., 2001 (JGR) Underwood et al., 2001 (JGR) Underwood et al., 2001 (JGR) Underwood et al., 2001 (JGR) Underwood et al., 2001 (JGR) Authentic dust (d ) HNO3 nitrate dust Kaolinite (11 ± 1.6) x10-2 CaCO3 (18 ± 4.5) x 10-2 SiO2 Saharan sand (2.9 ± 0.2) x 10-5 1.36x10-1 Chinese loess 1.71x10-1 Hanisch and Crowley, 2001 (Phys. Chem.Chem.Phys.) Hanish and Crowley, 2001 (J. Phys. Chem.)v Underwood et al., 2001 (JPC) Hanisch and Crowley, 2001 (Phys. Chem.Chem.Phys.) Hanisch and Crowley, 2001 (Phys. Chem.Chem.Phys.) 2) Dust size distribution Table 2. dust size distribution Dust Size Distribution / Reference C04 Clarke et al. [2004] Size mode D87 D’Almeida [1987] rg m) σg Mass fraction GMD SMD MMD O98 Hess et al. [1998] rg m) σg Mass fraction GMD SMD MMD B02 Dubovik et al. [2002] rg m) σg Mass fraction GMD SMD MMD 2.5μm of SMD Mode1 rg m) σg Mass fraction GMD SMD MMD 0.08 2.1 1.00% 0.16 0.48 0.83 0.07 1.95 3.40% 0.14 0.34 0.53 0.088 1.52 9.10% 0.18 0.25 0.30 Mode2 Mode3 0.345 1.46 1.80% 0.69 0.92 1.06 0.885 1.85 69.40% 1.77 3.77 5.51 0.70 1.9 95.30% 1.40 3.19 4.82 0.39 2.00 76.10% 0.78 2.04 3.30 Mode4 Mode5 4.335 1.5 28.80% 8.67 12.05 14.20 4.99 1.6 3.70% 9.98 15.52 19.36 1.9 2.15 20.50% 3.80 12.27 22.04 0.832 1.84 90.90% 1.66 3.50 5.08 Where GMD indicates geometric medium diameter. SMD is surface medium diameter. SMD=GMD*exp(3*ln2(GSD)) MMD is mass medium diameter. MMD=GMD*exp(2*ln2(GSD)) 3) Mass fraction and mass partitioning in size-resolved mineralogical species Table 3. mass fraction and mass partitioning (a) Reference dust REF (b) Bulk dust BULK (c) Fine and coarse dust FAC Size-resolved REF REF nick name Exp_saharan Exp_chinese magg N/A N/A mcal N/A N/A mqtz N/A N/A Size-resolved BULK exp1 BULK exp2 BULK exp3 BULK exp4 BULK exp5 BULK exp6 BULK exp7 nick name No calcite No quartz No clay All the three Calcite Clay Quartz magg 50 50 0 25 0 100 0 mcal 0 50 50 50 100 0 0 mqtz 50 0 50 25 0 0 100 Size-resolved nick name fine magg,f FAC_exp1A FAC_exp1B FAC_exp1C FAC_exp2A FAC_exp2B FAC_exp2C FAC_exp3A FAC_exp3B FAC_exp3C FAC_exp4A FAC_exp4B FAC_exp4C FAC_A FAC_B 5 25 45 5 25 45 0 0 0 2.5 12.5 22.5 Coarse mode dominant 10 Equal in fine and coarse 50 FAC_C Fine mode dominant 90 coarse mcal,f mqtz,f 0 0 0 5 25 45 5 25 45 5 25 45 magg,c 5 25 45 0 0 0 5 25 45 2.5 12.5 22.5 45 25 5 45 25 5 0 0 0 22.5 12.5 2.5 90 50 10 mcal,c mqtz,c 0 0 0 45 25 5 45 25 5 45 25 5 45 25 5 0 0 0 45 25 5 22.5 12.5 2.5 Results (a) Reference Run (REF) : the effect of size distribution O 3 + dust C04 D87 O98 (b) SO 2 + dust C04 B02 D87 O98 B02 1.0E-04 1.0E-04 1.0E-05 k_het (/s) k_het (/s) Chinese 1.0E-05 1.0E-06 Sahara calcite 1.0E-07 clay quartz 1.0E-08 1.0E-06 1.0E-09 size distribution (c) size distribution NO 2 + dust C04 D87 O98 (d) HNO 3 + dust B02 C04 1.0E-04 •The values of khet varies by factor of 5 to 10 due to dust size distrubution. •khet by authentic dust sample are different by factor of 5 for O3 loss and two orders of magnitude for SO2 loss. The mineralogical composition of authentic dust is different and it can be represent a mixture of mineralogical compositions. D87 O98 Sensitivity of k _he t to factors controlling s ize-re solve d m ine ral com positions B02 1.0E-01 0.6 1.0E-05 1.0E-02 1.0E-06 1.0E-08 1.0E-03 1.0E-04 1.0E-09 1.0E-05 1.0E-10 1.0E-06 1.0E-11 size distribution size distribution Figure 2. The values of khet of size-resolved mineral dust in REF for Saharan soil and China loess and BULK calcite, clay aggregate, and quartz using four dust size distribution. sensitivity (avedev/mean) k_het (/s) k_het (/s) 0.5 1.0E-07 0.4 0.3 0.2 size Chinese 0.1 size_Saharan 0.0 O3 SO2 NO2 HNO3 hete rogeneous re actions Results BULK Run (BULK) : the effect of mass fraction of mineralogical species (a) (b) O3 + dust(BULK) k_qtz(O3) k_cal(O3) The sensitivity of khet to mass fraction depends on the relative contribution of each mineral species to k_het. SO2 + dust (BULK) k_qtz(SO2) k_agg(O3) k_cal(SO2) k_agg(SO2) 1.2E-05 9.0E-06 8.0E-06 1.0E-05 6.0E-06 8.0E-06 k_het (/s) k_het (/s) 7.0E-06 5.0E-06 4.0E-06 6.0E-06 3.0E-06 4.0E-06 2.0E-06 2.0E-06 1.0E-06 BULK C04_exp qu ar tz c la y ca lc i te tz te /q ua r no c la y/ ca l ci no qu ar tz ca lc i te no qu ar tz c la y ca lc i te tz te /q ua r c la y no c la y/ ca l ci qu ar tz no ca lc i te no c la y 0.0E+00 0.0E+00 Sensitivity of k_het to factors controlling size-resolved m ineral com positions BULK C04 exp 0.5 k_cal(NO2) HNO3 + dust k_qtz(HNO3) k_agg(NO2) 8.0E-06 4.0E-03 7.0E-06 3.5E-03 6.0E-06 3.0E-03 5.0E-06 2.5E-03 k_het (/s) 4.0E-06 3.0E-06 2.0E-06 1.0E-03 BULK C04 exp qu ar tz c la y ca lc i te tz te /q ua r c la y no qu ar tz no ca lc i te qu ar tz 0.3 BULK_C04 0.2 BULK_D87 BULK_O98 0.1 c la y/ ca l ci BULK C04 exp c la y ca lc i te tz te /q ua r no c la y/ ca l ci no c la y 5.0E-04 0.0E+00 qu ar tz 1.0E-06 ca lc i te 0.4 k_agg(HNO3) 1.5E-03 0.0E+00 no k_cal(HNO3) 2.0E-03 no k_het (/s) (d) NO2 + dust k_qtz(NO2) sensitivity (avedev/mean) (c ) BULK_B02 0.0 O3 Figure 3. The values of khet of BULK size-resolved mineralogical species with different mass fractions of mineralogical compositions for C04 size distribution. SO2 NO2 HNO3 heterogeneous reactions Results FAC Run (FAC) : the effect of mass partitioning of mineralogical species (a) O3 + dust (FAC_C04) k_agg(O3) k_cal(O3) (b) k_qtz(O3) k_cal(SO2) k_qtz(SO2) 5.0E-05 2.5E-05 4.0E-05 2.0E-05 k_het (/s) k_het (/s) SO2 + dust (FAC_C04) k_agg(SO2) 3.0E-05 The larger mass fraction in fine mode, the higher values of khet 1.5E-05 3.0E-05 2.0E-05 1.0E-05 1.0E-05 5.0E-06 Sensitivity of k_het to factors controlling size-resolved mineral compositions FAC_C04_exp 4C 4b ul k 4B 4A 3C 3b ul k 3B 3A 2C 2b ul k 2B 2A 1C 1b ul k 1B 1A 4C 4b ul k 4B 4A 3C 3b ul k 3B 3A 2C 2b ul k 2B 2A 1C 1b ul k 0.0E+00 1B 1A 0.0E+00 0.8 FAC_C04_exp 0.7 NO2 + dust (FAC_C02) k_cal(NO2) HNO3 + dust (FAC_C04) k_qtz(NO2) k_agg(HNO3) 3.0E-05 3.5E-02 2.5E-05 3.0E-02 1.5E-05 1.0E-05 0.6 k_qtz(HNO3) 2.0E-02 1.5E-02 0.5 0.4 0.3 FAC_C04 FAC_D87 0.2 1.0E-02 FAC_O98 0.1 5.0E-06 5.0E-03 0.0E+00 FAC_B02 0.0 FAC_C04_exp 4C 4b ul k 4B 4A 3b ul k 3C 3B 3A 2b ul k 2C 2B 1C 1b ul k 2A 1B 1A 4C 4b ul k 4B 4A 3b ul k 3C 3B 3A 2b ul k 2C 2B 2A 1C 1b ul k 0.0E+00 1B 1A k_cal(HNO3) 2.5E-02 2.0E-05 k_het (/s) k_het (/s) k_agg(NO2) (d) sensitivity (avedev/mean) (c ) O3 SO2 NO2 HNO3 heterogeneous reactions FAC_C04_exp Figure 4. The values of khet of FAC size-resolved mineralogical species with mass partitioning of fine and coarse modes for BULK_C04_exp as well as BULK model for C04 size distribution. Results Sensitivity to controlling factors in heterogeneous loss rates Sensitivity of k_het to factors controlling size-resolved mineral compositions 1.0 REF : Reaction with HNO3 is the most sensitive to dust size distribution. ii) BULK : Reaction with O3 is the least sensitive to mass fraction of mineralogical species. iii) FAC : Unlike the mass fraction, mass partitioning is significantly affected by the dust size distribution. 0.9 D87 has the largest ratio and O98 is the least ratio. Because the relatively small fine mode in D87 size distribution, however, 0.8 Average deviation/Mean) i) 0.7 fine mode distribution occupied in relatively wide range of size distribution in O98 size distribution, the khet is not abruptly changed. 0.6 0.5 0.4 0.3 0.2 0.1 0.0 O3 SO2 NO2 HNO3 Dust Size Diistribution REF Chinese REF_Saharan BULK_C04 BULK_D87 BULK_O98 BULK_B02 FAC_C04 FAC_D87 FAC_O98 FAC_B02 iv) For heterogeneous uptake, HNO3 is the most sensitive to size-resolved mineralogical species. O3 is also the same trends. Mass partitioning, size distribution, and mass fraction are important. v) SO2 and NO2 are similar characteristics in the ensitivity to the size-resolved mineral species. Mass partitioning, mass fraction, and size distribution are important. Figure 5. The comparison of (average deviation)/(mean) of khet when the factors controlling khet considered for four heterogeneous loss rates. Results 3 Comparison between khet and J-values 1 J[O3(O P)], J[O3( D)], khet(O3) in C04 size distribution 1.0E-03 J(O(1D))_C04_1%H J(O(1D))_C04_5%H J(O(1D))_C04_10%H J(O(3P))_C04_1%H J(O(3P))_C04_5%H J(O(3P))_C04_10%H 1.0E-04 BULK_C04_exp1 BULK_C04_exp2 BULK_C04_exp3 J (/s) or k_het (/s) BULK_C04_exp4 FAC BULK_C04_exp5 BULK_C04_exp6 BULK_C04_exp7 1.0E-05 BULK FAC_exp1A FAC_exp1B FAC_exp1C FAC_exp2A FAC_exp2B FAC_exp2C 1.0E-06 FAC_exp3A FAC_exp3B FAC_exp3C FAC_exp4A FAC_exp4B FAC_exp4C 1.0E-07 0 3 6 9 12 15 18 21 24 time (hour) Figure 6. The heterogeneous loss rates and j-values of (a) O3, (b) NO2, and (c) HNO3 when the dust layer is located 1 km to 2km. C04 size distribution and moderate dust loading 1500 ug/m3 were considered. J[O3(1D)]and J[O3(3P)] are dominant process during the day. For NO2, photolysis rates is dominant. For HNO3 and SO2, heterogeneous loss are a predominant process. We can asses each process more realistically in terms of size and composition of dust particles. Conclusions i) The sensitivity of khet to size distribution is the largest in B02 size distribution and the smallest in C04 size distribution. In comparison with photolysis study, J-values are the largest in O98 size distribution and the smallest in C04 size distribution ii ) The sensitivity of khet to mass fraction of mineral species depends on the relative contribution of mineralogical species to khet. The O3 loss is the least sensitive to mass fractions because each mineral species play a role in O3 uptake. iii) The HNO3 is the most sensitive to the mass partitioning not only because large difference in uptake coefficients but also the order of uptake coefficients is 1.0 x 10-2~1.0x 10-1 extremely large. iv) For controlling factors of khet, the magnitude of uptake coefficients is most important. khet of O3 and khet of HNO3 are sensitive to mass partitioning, size distribution, and then, mass fraction in decreasing order. khet of O3 and khet of HNO3 show similar characteristics in the sensitivity to the size-resolved mineral species. Mass partitioning, mass fraction, and size distribution are important in decreasing order. v) Heterogeneous reaction of HNO3 and SO2 on dust particles are dominant process over photolysis rates. NO2 uptake is slow process relative to photolysis. Heterogeneous loss rates of O3 varies over one order of magnitude due to size-resolved mineral species and its has the same order of magnitude to that of the photolysis. Appendix REF, BULK, and FAC Run Chinese (a) O3 + dust --> C04 D87 (b) O98 SO 2 + dust --> B02 C04 1.00E-03 D87 Sahara O98 B02 1.00E-03 BULK_exp1 BULK_exp2 BULK_exp3 1.00E-04 BULK_exp4 BULK_exp5 k_het (/s) k_het (/s) 1.00E-04 1.00E-05 BULK_exp6 BULK_exp7 1.00E-06 1.00E-05 FAC_1A FAC_1B 1.00E-07 FAC_1C FAC_2A 1.00E-06 1.00E-08 FAC_2B size distribution size distribution FAC_2C FAC_3A (c) NO2 + dust --> C04 D87 (d) O98 FAC_3B HNO3 + dust --> C04 B02 1.00E+00 1.00E-04 1.00E-01 D87 O98 B02 k_het (/s) k_het (/s) 1.00E-03 1.00E-02 1.00E-05 1.00E-06 1.00E-03 size distribution size distribution Figure 5. The values of khet of REF, BULK, and FAC size resolved mineralogical species
© Copyright 2026 Paperzz