State-Space Recursive Least Squares EE-869 Adaptive Filters College of Electrical & Mechanical Engineering National University of Sciences & Technology (NUST) Introduction A recursive algorithm Built around state-space model of an unforced system Based on least squares approach Does not require process or observation noise statistics Works for time-invariant and time-variant environment alike Can handle scalar and vector observations SSRLS 3 State-Space Model v[k ] Unforced System x[k 1] 1 z I x[k ] C[k ] y[k ] A[k ] x[k ] n y[k ] m v[k ] m A[k ] n n C[ k ] m n A[k ], C[k ] SSRLS process states output signal observation noise system matrix (full rank) observation matrix (full rank) L-step observable 4 Batch Processed Least Squares Approach Batch of Observations p 1 CA x[k ] y[k p 1] Cx[k p 1] p2 y[k p 2] Cx[k p 2] x[k ] CA v p [k ] y p [k ] v p [k ] CA2 x[k ] y[k 2] Cx[k 2] y[k 1] Cx[k 1] 1 CA x[k ] y[k ] Cx[k ] Cx [ k ] v p [k ] v[k p 1] v[k p 2] v[k 1] v[k ] T Noise Vector y p [k ] H p x[k ] v p [k ] Batch Processed Least Squares Approach 6 Least Squares Solution CA p 1 p 2 Full rank for p l CA Hp CA2 1 CA C Weighting Matrix p 1I m 0 W 0 0 xxˆ[k ] ( H Tp H p )1 H Tp y p [k ] xˆ[k ] ( H TpWH p )1 H TpWy p [k ] Batch Processed Least Squares Approach 0 0 p2 Im 0 0 Im 0 0 0 0 0 Im Batch Processed Least Squares Solution Batch Processed Weighted Least Squares Solution 7 Recursive Algorithm Predict and Correct x [k ] Axˆ[k 1] y[k ] C x [k ] CAxˆ[k 1] [k ] y[k ] y[k ] xˆ[k ] x [k ] K [k ] [k ] Predicted States Predicted Signal Prediction Error Predictor Corrector Form Estimator Gain Recursive Algorithm 9 Recursive Solution H [k ] CA k k 1 CA y[k ] y[0] y[1] k I m 0 W [k ] 0 0 Recursive Algorithm CA C y[k 1] y[k ] T 0 k 1 1 0 Im 0 0 Im 0 0 0 0 0 Im T Based on k+1 observations k+1 observations Weighting Matrix 10 Recursive Solution (‘contd) [k ] H T [k ]W [k ] H [k ] Defined variables [k ] H T [k ]W [k ] y[k ] [k ]xˆ[k ] [k ] xˆ[k ] 1[k ] [k ] Recursive Algorithm Direct Form of SSRLS 11 Recursive Update of [k ] [k ] H T [k ]W [k ] H [k ] [k ] k A T k [k 1] k T C CA k 1 T A k 1 k 1 A T k 1 CT CA k 1 CT CA k 1 AT CT CA1 CT C [k ] AT [k 1] A1 C T C Recursive Algorithm AT CT CA1 C T C Difference Lyapunov Equation 12 Matrix Inversion Lemma En n Fn1n GnT m Dm1 mGmn E 1 F FGT ( D GFGT )1 GF Recursive Algorithm Matrix Inversion Lemma 13 1 Recursive Update of [k ] E AT [k ] A Define F [k 1] G CA DI 1 A [k ] A 1 1[k 1] 2 1[k 1] AT C T T 1 I CA [k 1] A C CA 1[k 1] 1 1 T T 1[k ] 1 A 1[k 1] AT 2 A 1[k 1] AT C T 1 I CA [k 1] A C CA [k 1] A 1 Recursive Algorithm 1 T T 1 T Riccati Equation for SSRLS 14 Recursive Update of [k ] [k ] H T [k ]W [k ] y[k ] [k ] k A T k [k 1] C y[0] k 1 T A T k 1 k 1 A T k 1 C T y[0] C T y[1] AT C T y[k 2] C T y[k 1] [k ] AT [k 1] CT y[k ] Recursive Algorithm AT C T y[k 1] C T y[k ] Recursive solution 15 Observer Gain K [k ] K [k ] 1[k ]C T Recursive Algorithm Defined 16 State-Space Representation of SSRLS w[k ] [k 1] Defined Therefore [k ] AT [k 1] CT y[k ] w[k 1] AT w[k ] C T y[k ] xˆ[k ] 1[k ] z[k ] Similarly 1[k ] AT w[k ] K [k ] y[k ] AT , CT , 1[k ] AT , K[k ] Recursive Solution State-Space Matrices 17 Initializing SSRLS [0], [1], [0] I 0 or [l 2] [0] I C T C Rank Deficient 1) Initializing using Regularization Term x [0] 0 2) Initialization using batch processing approach leads to delayed recursion - offers better initialization Recursive Algorithm 18 Steady-State SSRLS Steady-State Solution of SSRLS AT A1 CT C Can be written like this lim [k ] A k i 0 i T C C A i T 1 i if min Eigenvalues( A) 1 Steady-State SSRLS For neutrally stable systems 20 Direct Form of Steady-State SSRLS xˆ[k ] 1[k ] [k ] xˆ[k ] 1 [k ] Steady-State SSRLS 21 Observer Gain for Steady-State SSRLS K 1 [k ] Steady-State SSRLS 22 Transfer Function Representation 1 T H ( z ) A Steady-State SSRLS 1 T A zI A T 1 zI A T CT K 1 I CT 23 Initialization of Steady-State SSRLS Initialize only x [0] x [0] 0 Steady-State SSRLS Preferable choice if no other estimate is available 24 Memory Length 1 1 1 2 Steady-State SSRLS 1 1 Filter Memory Asymptotic result 25 Special Cases Constant Model A 1 C 1 1 z H ( z) z Special Cases System Matrices Transfer Function 27 Constant Velocity Model 1 T A 0 1 C 1 0 1 z z (1 ) 2 2 z H ( z) 2 1 z z 1 2 z Special Cases System Matrices Transfer Function 28 Constant Acceleration Model 1 T T 2 2 A 0 1 T 0 0 1 C 1 0 0 z z 2 1 3 3 z 1 2 3 2 1 3 z 1 2 z z 1 3 z 1 1 5 H ( z) 3 2T z 3 2 1 z z 1 3 T2 z Special Cases System Matrices Transfer Function 29 Sinusoidal Signal cos(T ) sin(T ) A sin( T ) cos( T ) C 1 0 System Matrices 1 z z (1 ) 2 cos T 2 2 z 2 z cos T H ( z) 1 z z (1 ) cos T cos 2 T 1 2 2 z 2 z cos T Special Cases Transfer Function 30 Computational Complexity Computational Complexities 32 Computer Simulation Sinusoidal Signal r (t ) a sin( t ) Sinusoid Signal Model cos( T ) sin( T ) sin( ) x[k 1] x[k ]; x[0] sin( T ) cos( T ) cos( ) y[k ] [a 0] x[k ] v[k ] 0.1 /3 a 1 Initial Value Simulation Parameters T 0.1 v2 0.001 Computer Simulation 34 Results Simulation Parameters 0.1 /3 a 1 T 0.1 v2 0.001 0.98 0.02 Computer Simulation 35
© Copyright 2026 Paperzz