Particle transport in turbulence and the role of inertia

Particle transport in turbulence and the
role of inertia
Singularities, fractals,and random uncorrelated motion
Michael Reeks
School of Mechanical & Systems Engineering
University of Newcastle-upon-Tyne, UK
Workshop on Turbulence in Clouds
Definition of particle inertia
Turbulent gas/solid flows
Dilute mixture/ one way coupling
d
1
u     g ;

dt  p
pd 2
 p  Stokes relaxation time 
( sphere )
18
Scaling Parameters in Shear Flows
turbulent Stokes no.   p TL or  p TE ; mean shear Stokes no.   p u L
settling velocity  g
u ,  g u
For particles to follow the turbulenc e  p TL or  p TE  1
For particles to follow the mean flow  p u L  1
Workshop on Turbulence in Clouds
Overview of scales in turbulent clouds
Turbulence:
Large scales:
Small scales:
L0 ~ 100 m,
Lk ~ 1 mm,
0 ~ 103 s,
k ~ 0.04 s,
u0 ~ 1 m/s,
uk ~ 0.025 m/s.
Droplets:
Radius:
Inertia:
Settling velocity:
Formation:
rd ~ 10-7 m,
St = d/k ~ 2 × 10-6,
vT/uk ~ 3 × 10-5
CONDENSATION
Microscales:
rd ~ 10-5 m,
St = d/k ~ 0.02,
vT/uk ~ 0.3
COLLISIONS / COALESCENCE
Rain drops:
rd ~ 10-3 m,
St = d/k ~ 200,
vT/uk ~ 3000
Collisions / coalescence process vastly enhanced
if droplet size distribution at microscales is broad
Workshop on Turbulence in Clouds
Purpose and Objectives
• Overview / Historical Development
• Relevance to Cloud Physics
– Segregation / demixing /collisions/ agglomeration
• Analogies and similarities to related
processes
– Deposition in a turbulent boundary layer
• Role of KS and DNS
• Awareness and appreciation
Workshop on Turbulence in Clouds
Outline
• Turbulent diffusion
– Homogeneous turbulence
• Particle diffusion coefficients
• Crossing trajectories
– Simple shear
– Inhomogeneous turbulence
• Turbulent boundary layer
• Segregation
– Characteristics
– Agglomeration
Workshop on Turbulence in Clouds
Particle dispersion in homogeneous stationary turbulence
Fundamental result
Long time Diffusion coefficien t


Dij()   i (0) j ( s ) ds  
ui (0)u j ( s ) ds

0
0




fluid velocityalong particletrajectory
( p)
( p)
Taylor's formula

  ui (0,0)u j (Y p ( s ), s ) ds ; Y p ( s ) is the position of a particle at time s
( p)
D ( p )   TLf
 (f)
(f)
D   TLf
0
; TLf( p )  Fluid Lagrangian integral time - scale along a particle trajector y
TLf( f )  Fluid point Lagrangian integral time - scale
Workshop on Turbulence in Clouds
Diffusion coefficient versus inertia
K. Squires PhD thesis
Workshop on Turbulence in Clouds
Diffusion coefficient versus drift
Crossing trajectories
Yudine (1959) Csanady (1970?)
Wells & Stock (1983)
Wang-Stock (1988)
Workshop on Turbulence in Clouds
Segregation
• Quantifying segregation
–
–
–
–
–
Historical development
Compressibility
Singularities
Random uncorrelated motion
Radial distribution function
• Agglomeration
– Simulation
– Probabalistic methods
Workshop on Turbulence in Clouds
particle motion in vortex and straining flow
Stokes number St ~1
Workshop on Turbulence in Clouds
Segregation in isotropic turbulence
Workshop on Turbulence in Clouds
Segregation simple random flow field
Workshop on Turbulence in Clouds
Settling in homogeneous turbulence ,
Maxey 1988, Maxey & Wang 1992, Davila & Hunt
g  g
 
t
(o)

  u ( x, t )    p ( y , s )

0
p
( y, s)

y Y ( x ,t s )
  St S 2
p

y Y ( x ,t s )
 R2
p

 p ( y, s ) is the instantane ous particle
velocity field; S , R are the strain rate and
rotation t ensors of the fluid along a particle tr
g
v (g0)  settling velocity in still gas (without t urbulence)
v g  settling velocity in turbule nt gas
Maxey & Wang vg>vg(0)
Workshop on Turbulence in Clouds
Davila & Hunt: settling
around free vortices vg>,<vg(0)
Compressibility of a particle flow
Falkovich, Elperin,Wilkinson, Reeks
Compressibility (rate of compression of elemental
particle volume along particle trajectory)
particle
streamlines
 
p

( y, s) y Y ( x ,t s ) Divergence of the particle velocity
field along a particle trajectory
•zero for particles which follow an incompressible flow
•non zero for particles with inertia
•measures the change in particle concentration
Workshop on Turbulence in Clouds

The statistics of the process v p t , X p (t ), ln J (t )
J ij 
xi (t )
; J  det J ij
x j (0)
  v p X p x,0 t , t  
d
ln J
dt

Compression - fractional change
in elemental volume of particles
along a particle trajectory
can be obtained directly from solving the eqns. of motion x(t),v(t),Jij(t),J(t))
Avoids
calculating the compressibility via the particle velocity field
Can determine the statistics of ln J(t) easily.
The process is strongly non-Gaussian
Workshop on Turbulence in Clouds
Particle trajectories in a periodic array of vortices
Workshop on Turbulence in Clouds
Deformation Tensor J
Workshop on Turbulence in Clouds
Singularities in a particle concentration
Workshop on Turbulence in Clouds
Compressibility
Workshop on Turbulence in Clouds
Intermittency –
Balkovsky, Falkovich (2001), Ijzermans et al (2008)
Moments of the spatially averaged number density, St=.5
Workshop on Turbulence in Clouds
Caustics - Wilkinson
Workshop on Turbulence in Clouds
Random uncorrelated motion
•Quasi Brownian Motion - Simonin et al
•Decorrelated velocities - Collins
•Crossing trajectories
- Wilkinson
•RUM
- Ijzermans et al.
• Free flight to the wall - Friedlander (1958)
• Sling shot effect
- Falkovich
R L (r )  v L (1,r1 )v L (2,r 2 )
r  r 2  r1
Falkovich and Pumir (2006)
Radial distribution function g(r)
r
g (r )  r  ( St )
Workshop on Turbulence in Clouds
g(r)
Compressibility in DNS isotropic turbulence
Piccioto and Soldati (2005)
Workshop on Turbulence in Clouds
Turbulent Agglomeration
Two colliding spheres volume v1, v2
r2
n
r1
Saffman & Turner model
radius of collision sphere rc  r1  r2
jr (rc )  current of colliding particles at rc
Collison kernel
K  collision area  / n
jr  12 n wr
test particle
Collision sphere
Agglomeration in DNS turbulence
L-P Wang et al. critically examined S&T model
•Frozen field versus time evolving flow field
•Absorbing versus reflection
Brunk et al. – used linear shear model to asess
influence of persistence of strain rate, boundary
conditions, rotation
Workshop on Turbulence in Clouds
K S  2πrc
2
wr  2π 2 rc
 u 
σ(rc )   
 x 
2
1/ 2
2
π
σ(rc )
 u 
rc ;  
 x 
2
 8 
3
KS  
 rc
 15 
dn(r1 )
  12 K S (r1 , r2 )n1 (r1 )nr2 
dt
1/ 2


15
Agglomeration of inertial particles
Sundarim & Collins(1997) , Reade & Collins (2000): measurement of
rdfs and impact velocities as a function of Stokes number St
K (r1 , r2 )  4rc g (rc , St ) wr (St )
2
RDF at rc
Ghost = interpenetrating
Finite particles = elastic particles
DNS -5%, 25% agglomeration
Workshop on Turbulence in Clouds
Net relative velocity between colliding
spheres along their line of centres
Probabalistic Methods
Workshop on Turbulence in Clouds
Kinetic Equation and its Moment equations
Zaichik, Reeks,Swailes, Minier)
w = relative velocity between identical particle pairs, distance r apart
Δu(r) = relative velocity between 2 fluid pts, distance r apart
Structure functions
ur (r ) , u (r ) ~ r /  K 
n
n
2
r /  K   1
Probability density(Pdf)
P
P


 w  mass 
 wP( w, r , t )  
  u P
t
r
w
w
convection
mass
momentum
 
t


β = St-1

 w0
xi
D

wi  
 wiwj   w i     ui
Dt
rj
Workshop on Turbulence in Clouds
Net turbulent
Force (diffusive)
Kinetic Equation predictions
Zaichik and Alipchenkov, Phys Fluids 2003
Workshop on Turbulence in Clouds
Dispersion and Drift in compressible flows
(Elperin & Kleorin, Reeks, Koch & Collins, Reeks)
•w(r,t) the relative velocity between particle pairs a distance r apart at time t
•Particles transported by their own velocity field w(r,t)
Random variable
•Conservation of mass (continuity)
D
   w(r , t )     (r (t ),0) exp     w(r , t t )dt 
Dt
0
t
 w  Diffusive flux (q D )  Drift flux (qd )
q   Dij (r )
D
i
 
rj
t
, Dij (r )   wi r , t w j (r , t t  dt 
t
q   wi r , t   w(r , t t  dt  
d
i
0
Only works for St<<1
Workshop on Turbulence in Clouds
0
Summary Conclusions
• Overview
– Transport, segregation, agglomeration dependence on Stokes
number
– Use of particle compressibility d/dt(lnJ)
– Singularities, caustics, fractals, random uncorrelated motion
– Measurement) and modeling of agglomeration
• (RDF and de-correlated velocities
• PDF (kinetic) approach, diffusion / drift in a random compressible
flow field
– New PDF approaches – statistics of acceleration points(
sweep/stick mechanisms)(Coleman & Vassilicos)
Workshop on Turbulence in Clouds