1 Section 10.4: Tangent Vectors and Normal Vectors Practice HW from Larson Textbook (not to hand in) p. 637 # 3-9 odd, 25-35 odd (just find T(t) and N(t)) Note: Sometimes, it is convenient to normalize a vector tangent to a vector valued function. This gives the unit tangent vector. Unit Tangent Vector Given a vector function r on an open interval I, the unit tangent vector T(t) is given by T ( t) r (t) 1 r (t) where r ( t ) 0 || r (t) || || r (t) || Example 1: Find the unit tangent vector T(t) to the curve given by r(t ) = t i + t 2 j when t = 1. Solution: 2 3 Example 2: Find the unit tangent vector T(t) for r(t ) = 2 cos t i + sin 6t j + 2t k at t . 6 Solution: The unit tangent vector is given by the formula T ( t) r (t) 1 r (t) . || r (t) || || r (t) || Using r(t ) = 2 cos t i + sin 6t j + 2t k, we see that r ( t ) 2 sin t i 6 cos 6t j 2k 2 sin t , 6 cos 6t , 2 and || r ( t ) || (2 sin t ) 2 (6 cos 6t) 2 (2) 2 4 sin 2 t 36 cos2 6t 4 Thus, T ( t) At t 1 r (t) || r (t) || 6 4 sin 2 t 36 cos 2 6t 4 2 sin t , 6 cos 6t, 2 , we have T( ) 6 1 1 4 sin 2 ( / 6) 36 cos 2 (6 / 6) 4 2 sin( / 6) , 6 cos( 6 / 6), 2 1 1 2( ) , 6( 1), 2 (Note that sin( / 6) 1 / 2 , cos(6/6) cos -1) 2 (1 / 2) 2 36( 1) 2 4 1 1, 6, 2 1 4( ) 36(1) 4 4 1 1, 6, 2 1 36 4 1 1 , 6, 2 41 1 6 2 , , 41 41 41 (continued on next page) 4 The following graph plots in 3D space the vector function r(t) and the corresponding unit tangent vector T(t) evaluated at t . 6 █ 5 Calculating the Unit Normal Vector In describing motion, sometimes it can be an advantage to calculate a vector orthogonal to the unit tangent vector T of the vector function r(t ) = f (t) i + g (t) j + h (t) k. z r (t ) y x One method is the use the fact that the T is a unit vector. Then, we know that T(t ) T(t ) || T(t ) ||2 1 If we use the product rule and differentiate both sides of this equation, we obtain T(t ) T(t ) T(t ) T(t ) 0 or 2T(t ) T(t ) 0 . Thus, T(t ) T(t ) 0 Hence, the derivative of T, T ' , is orthogonal to T. Normalizing T will give the principal unit normal vector N at t. 6 Principal Unit Normal Vector N For the vector valued function r(t ) = f (t) i + g (t) j + h (t) k with unit tangent vector T, the unit normal vector, assuming T(t ) 0 , is given by N( t ) T(t ) 1 T(t ) || T(t ) || || T(t ) || Note: Unless the function r(t) is simple, the unit normal vector N can be very computationally intensive. Maple can be a very convenient tool for simplifying the computations. 7 Example 3: Find the unit normal vector N for the vector to the curve given by r(t ) = t i + t 2 j when t = 1. Solution: 8 9 t █ 10 Example 4: Find the unit normal vector N for the vector r (t ) t , 5 sin t , 5 cos t . Use your result to find the unit normal vector at the point ( ,0,5) Solution: To find the unit normal vector N, we must first find the unit tangent vector T. Recall that the formula for the unit tangent vector T is given by T(t) 1 r (t ) || r (t ) || For r (t ) t , 5 sin t , 5 cos t , we have r (t ) 1, 5 cos t , - 5 sin t and || r (t ) || (1) 2 (5 cos t ) 2 ( 5 sin t ) 2 1 25 cos 2 t 25 sin 2 t 1 25(cos 2 t sin 2 t ) 1 25(1) 26 Thus, T( t) 1 1 1 5 5 r (t ) 1, 5 cos t , 5 sin t , cos t , sin t || r (t ) || 26 26 26 26 To get the unit normal vector, we use the formula N( t ) Using T(t ) 1 26 , 5 26 cos t , T(t ) 1 T(t ) || T(t ) || || T(t ) || 5 26 sin t , we see that T(t ) 0, 5 26 sin t , 5 26 and 2 2 5 5 25 2 25 | T(t ) | (0) 2 sin t cos t 0 sin t cos 2 t 26 26 26 26 Then, 25 (sin 2 t cos 2 t ) 26 25 (1) 26 5 26 (continued on next page) cos t 11 N (t ) 1 T(t ) | T(t ) | 1 1 5 0, 5 26 sin t , 5 26 cos t 26 26 5 5 0, sin t , cos t 5 26 26 26 26 5 26 5 0, ( ) sin t , ( ) cos t 5 5 5 26 26 0, sin t , cos t We last want to evaluate N(t ) 0, sin t , cos t at the point ( ,0,5) . We need to find the value of t that produces this point. Since r (t ) t , 5 sin t , 5 cos t , t since and 5 sin t 5 sin 5(0) 0 and 5 cos t 5 cos 5(1) 5 . Thus, Normal Vector at Po int ( ,0,5) N( ) 0, sin , cos 0,0, 1 0,0,1 t The following shows a framed graph of r (t ) t , 5 sin t , 5 cos t (in green) with the unit 1 5 5 tangent vector T(t ) , cos t , sin t (in red) and unit normal vector 26 26 26 N(t ) 0, sin t , cos t (in blue) displayed at the point ( ,0,5) . █
© Copyright 2026 Paperzz