Oscillations in sector of neutral mesons Oscillation phenomena occur in the system of neutral K, D and B mesons: K 0 K 0 , D0 D 0 , B 0 B 0 Strangeness, Charm and Beauty are not conserved S 2 , C 2 , B 2 7/31/2017 S. Tokar, Neutral meson oscillations 1 Oscillations in B-meson sector B-meson oscillations: Bd0 db : Bd0 Bd0 and Bs0 sb : Bs0 Bs0 Vqd Vqb* SM: no QCD corr. Vqb* Vqd 0 0 Essence of oscillation: B , B are produced in strong interactions, but they are not eigenstates of full Hamiltonian (mass operator). Convention for CP transformation: CP B0 B0 CP eigenstates: 1 B1 B0 B0 2 CP B1 B1 7/31/2017 1 B2 B0 B0 2 CP B2 B2 S. Tokar, Neutral meson oscillations 2 Evolution of B0 state B0 B0 time evolution: B0 ( t ) B0 B (t ) B 0 0 produced at t=0 0 B (t ) d i 0 dt B ( t ) 0 B (t ) M i 0 B (t ) 2 Hermiticity of mass and decay matrix: M=M and = * Off-diagonal elements: M12 M 21 and 12 *21 correspond to B0 mixing M12 and 12 stem from box diagram. 12- from the real final states – decays of both B0 and B0 Main contribution: CKM favored tree u- and c-decay not sensitive to new physics M12- induced by short-distance physics – top quark gives main contribution new physics affects the2 mixing phase M arg M12 * SM prediction (for BS): M arg VtbVts 7/31/2017 S. Tokar, Neutral meson oscillations 3 Mass eigenstates Eigenstates are linear combinations of B0 and anti-B0: BL p B0 q B 0 , BH p B0 q B 0 , Egenvalues and eigenstates are obtained from: det H I 0 and Masses p H I 0 q 2 2 CPT: H11=H22 M 12 i 12 / 2 M i / 2 H * * M i / 2 M 12 i 12 / 2 M12 i12 / 2 M12* i12* / 2 M H , L Re M Re Q , H , L 2Im 2Im Q M M H M L 2 Re Q , H L 4Im Q M i / 2 Q , Q Eigenvectors * * M12 i12 /2 q Q p M12 i 12 / 2 M12 i12 / 2 7/31/2017 p q 1 12 BH , L S. Tokar, Neutral meson oscillations CP-eigenstates on =1 1 B0 B0 12 4 Evolution od B-system Evolution of physical states: BH , L ( t ) BH , L e iM H ,L H ,L 2 t 1 B B0 0 1 Using the relation between physical and strong interaction eigenstates 2 B (t ) f (t ) B f (t ) B , 0 where f (t ) e 0 0 B (t ) 0 iM H t H t 1 iM Lt 2L t 2 f (t ) e e 2 iMt t 2 cos t , 2 f (t ) e iMt t 2 f (t ) B0 f (t ) B0 can be transformed into: sin t , M i 2 2 For B-mesons =H-L 0 and = M = MH-ML For B-oscillation we need: M, , =2Q ( Q 7/31/2017 M12 i12 / 2 M12* i12* / 2 S. Tokar, Neutral meson oscillations ) 5 Box diagram implications M12 and 12 values: from box diagram 12 : box diagram cut decays of B0 and B0 to common u-,c-final states GF2 12 M Bq ( Bˆ Bq f B2q )mb2 VtbVtq* 8 0 B 2 0 M12 -effective Hamiltonian : M12 Bq H eff Bq H B 2 eff 2 long distance QCD corr GF2 MW2 1c2 S0 xc 2t2 S0 xt 23c t S0 xc , xt Cl QCD O B 2 ( ) h.c. 2 16 Short distance QCD corr Vib Vid Box diagram w-o ext. legs i VibViq* , xi mi2 MW2 , S0 ( x ) x x 0 O B 2 b 1 5 q b 1 5 q id V Vib OB=2 1 1 2 2 2 MW q MW GF2 M 12 M Bq ( Bˆ Bq f B2q ) MW2 S0 ( xt ) VtbVtq* 2 12 q d , s for Bd0 , Bs0 7/31/2017 S. Tokar, Neutral meson oscillations 6 2 Box diagram implications Comparing M12 and 12 using leading terms, ignoring QCD corrections: 12 mb2 3 1 M12 2 S0 mt2 MW2 MW2 Ratio 12/M12 for leading terms is a real (*) quantity though 12,M12 are complex. SM expected: CP violation in B0-mixing is very small: 2 mt2 1 2 3 M 12 ~ t mt M B ln 2 4 MB 3 2 mt2 2 2t c mc ln 2 MB 12 12 e i at SM sin 0.01 M 12 M 12 From * |12|<<|M12| as 7/31/2017 8 , 12 ~ t2 mb2 t c mc2 3 For SM no CP-violation (=0) is a good approximation S0 mt MW ~ mt MW 2 2 S. Tokar, Neutral meson oscillations 2 2 12 M 12 3 mb2 2 mt2 7 B-mixing frequency: theo vs exp Using 12 M12 GF2 M=2|M12|: M 2 M Bq Bˆ Bq f Bq MW2 S0 ( xt ) VtbVtq* 6 Mixing frequency for Bd and Bs mesons 2 , q d, s used approximation: M Bd f B BB m d d t 0.50 ps 200 MeV 170 GeV M Bs 2 1.52 f B BB m Vts s t 15.1 ps 1 s 0.040 0.55 240 MeV 170 GeV 1 1.52 2 2 Vtd 0.0088 0.55 mt S0 ( xt ) 2.4 170 GeV 1.52 2 Lattice QCD: f Bd BBd 244 11 24 MeV and f Bs BBs f Bd BBd 1.21 0.040.04 0.01 Perturb. QCD: = 0.55 ± 0.01 Tevatron: mt = 172.8 ± 1.8 GeV/c2 3 3 CKM unitarity: Vtd 8.140.32 and Vts 41.610.12 0.64 10 0.78 10 measurement 7/31/2017 M Bd 0.507 0.004 ps 1 M Bs 17.77 0.10( stat ) 0.07( syst ) ps 1 S. Tokar, Neutral meson oscillations 8 Mixing parameters Oscillation case characteristics: variables x and y x M 1 decay , M 2 M12 1 M mix y 2 12 Taking imaginary part from Q2 where Q 12 M i 2 We get: M 7/31/2017 4 Re M12 12* M12 12 M * * i M i 12 12 12 12 2 12 S. Tokar, Neutral meson oscillations 9 Experimental view on mixing • Make a Bs meson and look for its flavor at decay • Identify the flavor at the production(tagging) • Look at oscillation probability vs proper decay time ct Lxy m BS pT Fourier component of asymmetry: Mixing amplitude 7/31/2017 S. Tokar, Neutral meson oscillations 10 Present CDF results CDF’s previous result: • p-prob=0.2 • Assuming that it is signal: 31 ( stat ) 0.07 ( syst ) m S 17.31 00..18 Bs oscillation observed with a significance of 5.4 (p=810-8): m S 17.77 0.10( stat ) 0.07 ( syst ) ps-1 Vts Vtd 0.2060 0.0007 (exp) 0.0081 ( theo ) 0.0060 7/31/2017 S. Tokar, Neutral meson oscillations 11 Charm Mixing: D0 -D0 Or mixing: D*++D0+K+Doubly Cabibbo Supressed “wrong sign” (WS) u W+ D0 s c d u u K - D*++D0+K-+ Cabibbo favored “right sign” (RS) W+ + “tagging” d c D0 s u u m m K m K m 7/31/2017 u S. Tokar, Neutral meson oscillations K R( t ) P D0 K ; t P D0 K ; t 12 Charm Mixing: rate of DCS/CF • Comparison of DCS (D0K ) to CF (D0K+-) decay rate as a function of time : R(t) • Assuming CP conservation and small values of x=M/ and y=/: x 2 y 2 2 R( t ) Rd y Rd t t 4 2 A( D0 K ) A( D0 K ) charm mixing var. x’, y’ related to m and of DL0, DH0 mass eigenstates: Rd x x cos y sin and y x sin y cos Strong interaction phase difference between the DCS and CF amplitude No mixing: (x’,y’) =(0,0) R(t)=Rd 7/31/2017 S. Tokar, Neutral meson oscillations 13 Charm Mixing: results Performed a binned fit to ratio of WS/RS D0 decay as function of time: R(t) Probability of no mixing (x’,y’)=(0,0) is 0.013% Equivalent to 3.8 significance Rd = 3.04±0.05 x 10-3 y’ = 8.5±7.6 x 10-3 x’2 = -0.12±0.35 x 10-3 Evidence for charm mixing! (significance competitive to Belle & BaBar) Decay time in D0 lifetimes 7/31/2017 S. Tokar, Neutral meson oscillations 14 Conclusions Neutral mesons oscillation phenomena are a big challenge for experimental particle physics. It is an important window for a new physics. Real chance to see D0-oscillation at Tevatron Comparison of mixing cases 7/31/2017 S. Tokar, Neutral meson oscillations 15 Backup slides 7/31/2017 S. Tokar, Neutral meson oscillations 16 Box diagram implications – decay width Decay width • experiment: from the lifetime measurement • theory: main contribution from spectator diagram (b qW ) ~ mb5 Vqb 7/31/2017 S. Tokar, Neutral meson oscillations 17 2 Backup slides box diagrams with QCD corrections Box diagram expressions without QCD corrections c.f. Sachrajda ‘98 7/31/2017 S. Tokar, Neutral meson oscillations 18
© Copyright 2025 Paperzz