Revista Brasileira de Física, Vol. 6 , Nº 2, 1976 One-Carrier Free Space Charge Motion under Applied Voltage: The General Solution * P. C. CAMARGO Departamento de Ciências Físicas e Matemáticas, Universidade Federal de São Carlos, São Carlos SP and G. F. LEAL FERREIRA Departamento de Física e Ciência dos Materiais, instituto de Fkica e Química de São Carlos", Universidade de São Paulo, São Carlos SP Recebido em 13 de Maio de 1976 E x t e n d i n g the method o f s o l u t i o n r e c e n t l y presented i n t h i s j o u r n a l , the system o f p a r t i a l d i f f e r e n t i a l equations d e s c r i b i n g the o n e - c a r r i e r f r e e space-charge motion under a g i v e n a p p l i e d v o l t a g e i n t o a system o f two o r d i n a r y d i f f e r e n t i a l equations. is The transformed method a p p l i e d t o f i n d t h e externa1 c u r r e n t observed w i t h s h o r t e d e i e c t r o d e s is , a f t e r space charge l i m i t e d c u r r e n t i n j e c t i o n . Extendendo-se o método de solução recentemente apresentado nesta Revist a , o sistema de equações d i f e r e n c i a i s p a r c i a i s , que descreve o movi- mento de carga e s p a c i a l monopolar, sob voltagem constante, é transfor- mado em um sistema de duas equações d i f e r e n c i a i s o r d i n á r i a s . O método é a p l i c a d o ao c á l c u l o da c o r r e n t e e x t e r n a f o r n e c i d a em c u r t o c i r c u i t o , após i n j e ç ã o de carga e s p a c i a l . 1. INTRODUCTION By o n e - c a r r i e r f ree space charge motion (FSCM) , we mean the time deve- lopment o f an excess charge d i s t r i b u t i o n , moves i n which every c a r r i e r w i t h a v e l o c i t y p r o p o r t i o n a l t o the e l e c t r i c f i e l d a c t i n g upon i t . * Work supported by FAPESP and CNPq. ** P o s t a l Address: Caixas P o s t a i s 359-378, 13569 - São Carlos SP. As the e l e c t r o d e s (we are assiiming p l a n a r geometry) may a l s o bear e l e c t r i c charges, the complete s p e c i f i c a t i o n o f the e l e c t r i c f i e l d needs a r e f e rente t o them, as open i f unconnected, o r as under an a p p l i e d i f they are connected through an e.m.f. voltage source. They a r e known, respec- t i v e l y , as charge and c u r r e n t modes. I n t h i s a r t i c l e w i l l be given a s o l u t i o n o f the FSCM, in the current mode, assuming t h a t the charge d i s t r i b u t i o n , which completely f i l l s the dielectric, i s k n o k ~ ~a,t a g i v e n time, as w e l l as the a p p l i e d as a f u n c t i o n o f time. voltage To achieve t h i s aim, we extended the method s o l u t i o n r e c e n t l y develo p ed i of f o r the case i n which the charge d i s t r i b u - t i o n touches o n l y one o f the e l e c t r o d e s . I t t u r n s o u t t h a t the system o f p a r t i a 1 d i f f e r e n t i a l equations d e s c r i b i n g the FSCM, namely the Poisson and c o n t i n u i t y equations, tagether w i t h the c o n s t r a i n t knowledge o f the v o l t a g e imposes on t h e i r s o l u t i o n s , into a system is that the transformed o f two o r d i n a r y d i f f e r e n t i a l equations ( i n Ref. 1 we had o n l y one) f rom whose s o l u t i o n the q u a n t i t i e s o f i n t e r e s t may be derived. The method i s a p p l i e d t o f i n d the externa1 c u r r e n t d e l i v e r e d by a lectric which was shorted a f t e r being 1 i m i ted c u r r e n t regime. in die- the s t a t i o n a r y space-charge This case has received some a t t e n t i o n l i t e r a t u r e ( ~ e f s . 2 , 3 , 4 , 5 ) , s i n c e i t i s c l o s e l y connected ment. I n the seque1, we wi 1 1 o f t e n quote Ref. 1 ( CALF ) , with in the experi- on which most o f t h i s work i s based. 2. THEORY We use, throughout t h i s paper, dimensionless v a r i a b l e s as CALF, p.351. defined Thus, we w r i t e t h e Poisson and c o n t i n u i t y equations as in where, E i s the e l e c t r i c f i e l d s t r e n g h t , p, the charge d e n s i t y , i, the potential conduction c u r r e n t , r, t h e depth as measured from the h i g h e r e l e c t r o d e , and t, the time. We are given and V ( t ) bei ng the appl i e d v o l tage. Using the method o f the c h a r a c t e r i s t i c s , the f o l l o w i n g e q u a t i o n s are ob t a i ned which may be i n t e g r a t e d t o g i v e the equation o f the f l o w l i n e s and the charge d e n s i t y a l o n g them, E(X~)=E(X,O) being a known f u n c t i o n o f t h e p o s i t i o n which may be found frorn p ( x o ) and v(O), and j the externa1 c u r r e n t . 3. THE FUNCTION y(t) AND zít) We assume t h a t both electsodes are r e c e i v i n g c a r r i e r s ; t h i s is surrly the case, f o r a l l times, i f V(t)=O, and f o r a l i m i t e d range o f time, i f the v o l t a g e i s n o t so h i g h as t o d r i f t a11 the c a r r i e r s i n a given rection ( i n t h i s c a s e t h e p r o b l e m w o u l d b e t r e a t e d a s i n R e f . 1). define, therefore, f u n c t i o n s y = y ( t ) and z = z ( t ) as g i v i n g the coordinates, y and z, o f t h e c a r r i e r s t h a t , a t time t , were v e l y a t $=O and x=1. diWe initial respecti- C l e a r l y , we have y(O)=O.and z(0)=1. Hence, we may o b t a i n the equations (CALF, p.353) With the v a r i a b l e s y and z, we may w r i t e , from Eq.(2), With the h e l p o f these r e l a t i o n s , Eq.(2) may be r e w r i t t e n e i t h e r as I n Eqs.(5) at and (61, ~ ( y and ) E ( z ) , l i k e E ( x O ) , are t h e e l e c t r i c f i e l d t=O, expressed as a f u n c t i o n o f t h e v a r i a b l e s y,z and xo. Charge conservat i o n a1 lows us t o w r i t e On the o t h e r hand, from Eq. ( I ) , we d e r i v e 234 , r1 ~ ( , t1) = xp(x,t)dx + V ( t ) . (8) We, now, change t h e i n t e g r a t i o n v a r i a b l e , i n E ~ (81, . from x t o g i v e n by Eq. (6a). x as Keeping the time f i x e d , as the i n t e g r a t i o n r e q u i r e s , we d i f f e r e n t i a t e Eq. (6a), o b t a i n i n g which may be i n t e g r a t e d , g i v i n g wi t h ~ ( r d) e f i n e d as , obtain S u b t r a c t i n g Eq.. (5a) f rom (5b), and u s i n g t h e r e s u l t i n Eq. ( l ~ ) we Using E ~ (.i ' ) , we may w r i t e , f o r E(O,t), S u b s t i t u t i o n o f Eqs. ( l 2 a ) and (12b), r e s p e c t i v e l y i n t o Eqs. ( 4 a ) (4b), gives r i s e t o a system o f two o r d i n a r y d i f f e r e n t i a l equations y,z and t: and in I t i s desi r a b l e t o add a few words o f comnent about t h i s system. we note t h a t , f o r +O, i f E(y)<O,anddz/dt<O, ~ ( t and ) z(t). W(O)=O (see E q . ( I I ) ) and W(z)=V(O), so i f E(z)>O,asrequiredbythedefinitions s i n g f u n c t i o n o f time, and z a decreasing one. ; y wi11 be an We, t h e r e f o r e , t h a t , f o r l a r g e times, y and z tend t o the same l i m i t , a gives d y / d t z ( t ) i s , however, very de1 i c a t e because, - dy/dt>O, of Suppose now t h a t v ( ~ ) = o ; t h e r e f o r e , as already said, the proposed s o l u t i o n w i l l be v a l i d f o r a l l times O o f y ( t ) and Fi r s t , . increaexpect This behavior f o r y- z , Eq. dz/dt, what would v i o l a t e the c o n d i t i o n t h a t y ( t ) must an increasing, and z ( t ) a decreasing, (13) be f u n c t i o n o f time. We have always found t h a t , i n c r e a s i n g accuracy o f the numerical i n t e g r a and t i o n o f Eqs. ( l 3 ) , a c t u a l l y increases the time f o r which y ( t ) z(t) behave as expected. The common 1 i m i t value o f y ( t ) and z ( e ) , f o r t*, i s closely related the t o t a l charge ~ ( t c) i r c u l a t i n g i n the externa1 c i r c u i t . to To see t h i s , we d i f f e r e n t i a t e Eq. ( 2 ) w i t h respect t o time:. The e l e c t r i c f i e l d , a c t i n g a t l a r g e times (t*), upon those carriers which never reach the e l e c t r o d e s i s zero, t h a t i s , E ( x ( ~ ) , ~ ) = o C . learly, xO=a , so t h a t This equation provides a t e s t f o r the correctness o f our calculation, s i n c e a comes o u t o f the i n t e g r a t i o n o f Eq. (13), and j ( t ) , the externa? c u r r e n t , rnay be found a c c o r d i n g t o t h e procedure g i v e n i n the n e x t Sec- tion. 4. THE EXTERNAL CURRENT AND THE CHARGE DENSITY The e x t e r n a l c u r r e n t , j l t ) , i s g i v e n by I n t e g r â t i o n o f t h i s e q u a t i o n i n x , from O t o 1 , u s i n g Poisson's equation, gives Using Eqs. (12a) and (12b), we o b t a i n The charge densi t y , a t t i m e t, rnay be found, f o r any r,, u s i n g i t s p o s i t i o n , x, i s g i v e n by Eq.(6a) Therefore, Eq. ( 3 ) ; ( o r Eq.(6b)). once y ( t ) and z ( t ) a r e known, t h e e x t e r n a l c u r r e n t and charge d e n s i t y can be d i r e c t l y c a l c u l a t e d . 5. APPLICATIONS I n most cases, we do n o t know the i n i t i a l charge d i s t r i b u t i o n . ver, t h e t r a p f r e e d i e l e c t r i c i s i n the s t a t i o n a r y space charge c u r r e n t regime, t h e charge d e n s i t y i s indeed known, and i t w i l l If,, howe- limited be used t o i l l u s t r a t e o u r method. We suppose ohrnic contact a t the i n j e c t i n g e l e c t r o d e Using t h e same dirnensionless v a r i a b l e s , as i n Ref.5, d u r i n g t h e charge. t h e s t a t i o n a r y space charge d e n s i t y i s p(jc,)= 3/4 2 - ' 1 2 . A t $=O, t h e e l e c t r o d e s a r e s h o r t e d o , and we want t o know t h e c u r r e n t d e l i v e r e d by the system (besides the cap a c i t y c u r r e n t peak, a t t=O), as w e l l as t h e charge d e n s i t y as tion a func- o f time. To s t a r t w i t h , Fig.1 e x h i b i t s y and z as f u n c t i o n s o f time. obtained, by the f i r s t o r d e r Runge-Kutta method, on calculator. I t i s seen t h a t , even f o r t=20, t o t h e i r a s y m p t o t i c value, a. and z=0.5017. I t seems s a f e t o p u t a=0.4844 p i s almost u n i f o r m . were HP-9810-A desk z and y a r e n o t t o o For i n s t a n c e , f o r t=26, we have + close y=0.4672 0.0005. F i g u r e 2 shows p as a f u n c t i o n o f x and t, f o r 03<1.4 t=1:4, a These . We see t h a t , a t Fig.3 displays the external current j(t), j and t h e charge ~ ( t )(see Eq. ( 1 4 ) ) , as a f u n c t i o n o f t. Observe t h a t has a very f a s t i n i t i a l decay ( 0 ~ < 1 ) , f o l l o w e d by a r a t h e r The time t - slow one 1 , m e d i a t i n g these two behaviors, may g i v e a gross . indica- t i o n o f the value o f the m o b i l i t y . F o l l o w i n g a h i n t taken f r o m e x p e r i m e n t s t h a t the f u n c t i o n 0.375 exp(-4.182Jt) i n KCN c r y s t a l s , we have found very c l o s e l y represents the e x t e r - na1 c u r r e n t , i n t h e range O<t<2. The a s y m p t o t i c value o f ~ ( t ) , t h a t i s , Q(m), was found t o be -0.04426 Coming back t o Eq. (15) , we have giving E ( a ) = 0.04398 + 0.00054. E(x,)= -1 + 3/2 úc:" Since a was found . and a=O.4844+O.OOO5, in a r a t h e r crude way, we t h i n k t h a t & ( a ) , as o b t a i n e d by i n t e g r a t i o n , p r o v i d e s a better value o f t h e e x t e r n a l charge than t h a t g i v e n by - ~ ( a ) . Some years ago, ~ i n d m a ~ e deduced r ~ ' ~ an e x p r e s s i o n r e l a t i n g t h e e x t e r n a l c u r r e n t w i t h t h e motion o f t h e z e r o f i e l d plane, namely, where r ( t ) g i v e s the p o s i t i o n o f the z e r o f i e l d p l a n e ( t h a t i s , t)=0. We wi 11 discuss some r e s u l t s , a r i s i n g from Eq. ( l 7 ) , FSCM scheme. ~(r(t), within I n t e g r a t i n g Eq. (17) i n t h e time v a r i a b l e , we have the Fig.1 - y and z as f u n c t i o n s o f t i m e f o r SCLC d i s c h a r g e . Note t h e weak convergence t o t h e common l i m i t a. f - - Fig.3 - o f time. - external current Jít) (---) external circulating charge Q (t ) The e x t e r n a l c u r r e n t ( f u l l ) and charged (dashed) as a The approximáte v a l u e o f &(a) i s a l s o given. function where r, is the initial position of the zero field plane. Now, at r(t), the charges are not moving, and so we may say that -j(t)dt is the charge swept out by the moving zero field plane, in a locally stationary charge conservation, we may further say that -&(t) is equal to the charge lying between the initial value of r, that is r o , and the initial position, s,, of those carriers that, at time t, are in r(t). For t*, we have s,+ a , and we correspondingly wri te For a monotonically decreasing initial charge distribution, Lindmayer puts Actually, this relation may be derived from ~~.(19), noting that, for a monotonically decreasing ~(x,), j is negative, and by ~~.(17),dr/dt is positive. This means that a>r, and ~(r,)> ~(a). This allows us to write from Eq.(19) It is easy, now, to show for FSCM that, along a flow line, This relation shows that ap/ax cannot change sign during the charge motion, and hence a monotonically decreasing p remains monotonically decreasing as the time goes on. For such charge distributions, ~(1/2,t)is always greater than zero, and we conclude that a<1/2, because the char- Fig.2 - Tridimensional x and t . At t=1.4, p l o t o f t h e charge d e n s i t y as the charge d e n s i t y i s almost uniform. a function o f ges i n i t i a l l y a t *1/2 Therefore, a c t u a l l y r e a c h t h e e l e c t r o d e a t x=1. L i n d m a y e r ' s i n e q u a l i t y , Eq. (ZO),has Our r e s u l t s s a t i s f y t h e c o n d i t i o n a<1/2, which i s stronger than Eq. (20). We g e t a>0.4838, been d e r i v e d . and a l s o t h e i n e q u a l i t y ~ ~ . ( 2 1 ) From E q . (211, we have w h i c h i s t o be compared w i t h t h e e x t r a p o l a t e d v a l ue , namely, a=0.4844 5 0.0005. 6. CONCLUSION We deem t h a t o u r method g r e a t l y s i m p l i f i e s the s o l u t i o n o f the p a r t i a 1 d i f f e r e n t i a l e q u a t i o n s as compared w i t h t h e d i r e c t p e r f o r m e d by J. van ~ u r n h o u t ' ~ i,n a s i m p l e r case ( c h a r g e one o f t h e e l e c t r o d e s ) . FSCM integration touching only We a l s o t h i n k t h a t a p p r o x i m a t e s o l u t i o n s o f t h e p r o b l e m w i l l be welcome inasmuch as t h e e x t e r n a 1 c u r r e n t does n o t depend on t h e f i n e d e t a i l o f t h e charge d i s t r i b u t i o r i . I n t h i s r e s p e c t , o u r so- l u t i o n may be h e l p f u l . We a r e i n d e b t e d t o L.N. de O l i v e i r a f o r c a l 1 i n g o u r a t t e n t i o n to the meaning o f t h e Lindmayer theorem as e x p r e s s e d i n S e c t i o n 4 REFERENCES 1 . L . E. Carrano de Almeida and G . F. L e a l F e r r e i r a , Rev. B r a s i l . 5, - Fís., 349(1975). 2. A. Rose, Concepts i n Photoconductivity and A l l i ~ dProblems, science Publ., New York, 1963. 7, 4 3 3 (1974). Phys., 7, L 103 ( 1 9 7 4 ) . 3. D. J. Gibbons, J. Phys. D, A p p l . Phys., 4. B. Gross, J . A p p l . Phys. D, Appl. I nter- - 5. A. Many, G. Rakavy, Phys. Rev. 126, 1980 (1962). 6. M. F. de Souza, p r i v a t e communication. 7. J. Lindmayer, J. Appl. Phys. 2, 196 (1965). 5,853 8. B . Gross, ti. M. Perlman, J. Appl. Phys. 9. L. N. de O l i v e i r a and F.G: Leal F e r r e i r a , U n i f o r m Charge D i s t r i b u t i o n s " . " (1972). Exact S o l u t i o n s withNon- To be p u b l i s h e d i n J. o f E l e c t r o s t a t i c s . 10. J. van Turnhout , bermuZZy StimuZated Dischurge o f PoZimer EZectrets, E l s e v i e r Publ. Lo. 1974, Chapter V .
© Copyright 2026 Paperzz