Monitoring the plant water status with terahertz waves Dr. Gunter Urbasch Experimental Semiconductor Physics AG Martin Koch Fachbereich Physik Experimentelle Halbleiterphysik Arbeitsgruppe M. Koch Gunter Urbasch Philipps-Universität Marburg – Fachbereich Physik Experimentelle Halbleiterphysik Arbeitsgruppe M. Koch …(and several colleagues) at 4th Terahertz workshop on Elba (2012) ...thanx Experimentelle Halbleiterphysik Arbeitsgruppe M. Koch main topics of interest • ultrafast spectroscopy of semiconductor nanostructures • development of semiconductor disk lasers • terahertz systems and their applications Electromagnetic TeraHertz (THz) radiation visible THz radio waves micro waves 10 7 10 8 10 9 10 10 11 10 infrared 12 10 13 10 ultraviolet Röntgen 14 10 15 10 16 10 17 10 frequency (Hz) high frequency microwaves THz extreme far infrared light Electromagnetic THz radiation visible THz radio waves micro waves 10 7 10 8 10 9 10 10 11 10 infrared 12 10 13 10 ultraviolet Röntgen 14 10 15 10 16 10 frequency (Hz) frequency 0.1 THz - 10 THz photon energy 0.4 meV - 41 meV wavelength 3000 µm - 30 µm wavenumber 3.3 cm-1 - 333 cm-1 17 10 water content First demonstration of imaging THz spectroscopy fresh leave 48 h after cutting the leave Bell Labs Lucent Technologies B.B. Hu and M.C. Nuss, Opt. Lett. 20(1995)1716 First THz monitoring of rehydration 30 Coleus % transmission Before watering 20 10 After watering 0 1.00 0.95 Relative % transmission 0 8 hours 5 10 15 20 25 30 35 40 45 50 position (mm) 0.90 0.85 0.80 Bell Labs 0.75 Lucent Technologies 0.70 0.65 0 100 200 300 Time (minutes) 400 500 D. Mittleman et al., IEEE Journal of Selected Topics in Quantum Electronics 2(1996)679 Water status of plants Transmission (%) transmission (%) 90 Coffea arabica measured Messwerte Trendlinie 60 30 0 5 10 15 20 Tage nach days afterWassergabe watering • THz transmission - close-to-real-time information about hydration and dry stress • non-destructive • water supply - intelligent irrigation strategies for plant breeding industry • monitoring for selective cultivation C. Jördens et al. JBiologicalPhysics35(2009)255 …but not only in the lab …plants live outside Pulsed THz spectroscopy Laboratory setup THz time domain spectroscopy (THz TDS) beam splitter femtosecond laser pulse sample lens lens emitter detector delay line THz TDS spectrometer collimating & focusing optics substrate + lens gating fs pulse photoconductive antenna (THz emitter) THz beam y photoconductive gating antenna pulse t THz receiver w/o tip THz field with tip x70 x 0 near-field tip sample 2 4 t (ps) 6 Imaging - raster scanning sample sample scanned through focus for every pixel time transient collected and processed integrated transmission over frequency window gives image pixel value …typically image takes some time Emission and detection of THz pulses silicon lens THz pulse incoming THz pulse Das Bild k ann zurzeit nicht angezeigt werden. optical pulse dipole antenna Vb Das Bild k ann zurzeit nicht angezeigt werden. optical pulse I dipole antenna Fiber coupled THz antennas Antenna chip Electr. Glass fiber contacts Glue N. Vieweg et al. SPIE 6616, Munich (2007) N. Krumbholz et al. PolymerTesting28(2009)30 Harsh environment …need for fiber based system fs fiber laser transmitter unit sample (leaf) HDPE lenses receiver unit delay unit Signal processing Signal processing fundamental FFT 2,5 Referenz reference sample Probe 2,0 Fotostrom nA current I I/ /nA Amplitude Einheit) amplitude(willk. / arb. units time domain (THz pulse) 1,5 1,0 0,5 0,0 -0,5 0 5 10 15 20 25 frequency domain Frequenzbereich 10 Referenz reference sample Probe 1 0,1 0,01 30 time Zeitt /t ps / ps 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Frequenz frequencyf /f THz / THz dielectric properties of sample n n i phase difference d c 0 4 ↔ refractive index n(f) ratio of amplitudes ↔ absorptions coefficient α(f) Signal processing - advanced software commercially available…The Tera Lyzer • simultaneous extraction of thickness and optical parameters • multi-layer analysis possible • versatile time preprocessing features THz transmission through water film 250 200 100 150 Transmission (%) -1 Absorption coefficient (cm ) 300 100 50 80 60 40 20 0 0 50 100 150 200 Water film thickness (m) 0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 Frequency (THz) cannot penetrate water film thicker than few 100 µm attenuation depends on frequency Monitoring the plant water status Coffea arabica refractive index absorption f = 0.3 THz Monitoring the plant water status Coffea arabica 10 20 30 0 40 10 50 20 60 30 70 Loss of water [ %] ( thermogravimetrically ) THz Transmission [%] …inside the lab - works well 40 80 50 90 0 5 10 15 20 time without watering [d ] C. Jördens et al. JBiologicalPhysics35(2009)255 Drought stress …of oilseed rape (Brassica napus L.) 0.20 moment of irrigation 0.30 0.35 0.40 0.50 2 light off 0.45 light on Transmission 0.25 3 4 5 6 Days after last irrigation 7 Water content analysis based on a physical model leaf consists of dry plant material + water + air effective medium theory (EMT) optical properties result from volume contents + thickness + surface scattering C. Jördens et al. JBiologicalPhysics35(2009)255 nonlinear optimization to get water content Lets go outside the lab! computer controlled all fiber based THz TDS spectrometer inside rack with handheld sensor head …outside the lab …it works! barley 100 rel. water content (grav. %) 95 EMT-model gravimetric measurement 90 85 80 75 70 65 60 55 50 0 20 40 60 80 100 120 80 100 120 deviation (%) drying time (min) 10 5 0 0 20 40 60 drying time (min) Application of a further system inside greenhouse Sub-THz system …the idea of the chef Sub-THz system …and what comes out 60 GHz emitter light source 35 GHz emitter 35 GHz detector camera 60 GHz detector Sub-THz system 30 Wassergehalt / g 25 20 Kontrollgruppe Stress Null Kontrollgr. (grav.) Stress (grav.) Null (grav.) 15 10 5 0 0 2 4 6 8 Zeit / Tage 10 12 water content of barley plants vs time watered in different ways red: sub-THz measurements black: gravimetric measurements 14 16 Monitoring the plant water status with THz waves • THz radiation senses through many opaque materials • non-destructive and contactless sensing • spatial resolution in the range of mm • high sensitivity for water (inside plants) • nearly ready for commercialization Thank you for your attention! Special thanks to Norman Born, Ralf Gente, Michael Schwerdtfeger, and Nino Voß
© Copyright 2026 Paperzz