A Brief Introduction to CMAQ Serena H. Chung BioEarth Working Group 1 Seminar May 21, 2012 Outline • • • • • Chemical Transport Models (CTMs) CMAQ Model Components CMAQ Output Parallel Programming in CMAQ WRF and CMAQ Linkages Chemical Transport Models (CTMs) • Transport: – Same physics as numerical weather model, but different numerical methods are needed • Chemistry – Focuses on criteria pollutants which negatively affect human health • Ozone (O3): plant stresser ecosystem impact • Particular Matter (PM) in air quality community or aerosols in climate science community – Consists of hundreds if not thousand of chemical species – Climate impact: scatter and absorb radiation; affects cloud formation • NOx (=NO + NO2): most of which eventually deposits as nitrate ecosystem impact • SO2 : forms, sulfate aerosol, contributes to acidification ecosystem impact • Mercury and other air toxics Chemical Transport Model Equation • Solves for species concentration Cs using mass conservation equation for each grid cell and time step: ¶Cs ¶Cs ¶Cs ¶Cs ¶ æ ¶Cs ö ¶ æ ¶Cs ö ¶ æ ¶Cs ö +u +v +w = çK x ÷ + çKy ÷ + Rs + Ds + Es ÷ + çKz ¶t ¶x ¶y ¶z ¶x è ¶x ø ¶y è ¶y ø ¶zè ¶z ø horizontal change in advection concentration • vertical advection horizontal diffusion chemical emission vertical reaction diffusion deposition Input or derived from numerical weather model (e.g., WRF, MM5) Wind fields: u, v, w Eddy diffusivity (turbulent diffusion) coefficients: Kx=Ky, Kz Temperature, Pressure, (& Radiation Fields): Clouds & Precipitation: To calculate reaction rates Emissions rate can also be temperature and/or light dependent Aqueous-phase reactions Removal rate by wet deposition Dry deposition velocities vd,s, where Ds = vd,s Cs,layer 1 Chemical Mechanisms • A chemical mechanism is a condensed set of chemical reactions – Chosen to represent conditions of interest, .e.g, O3 in polluted environment, stratospheric O3 • Example - University of Leeds Master Chemical Mechanism – Thousands of species and >10,000 chemical reactions • Options in CMAQ v5.0 – CB05: – SAPRC99: – SAPRC07: ~72 species, ~187 reactions ~88 species, ~144 reactions ~150 species, ~413 reactions HNO3 PAN Nitrogen cycle in the troposphere is tightly coupled to O3 & aerosol chemistry OH● hn DMS or VOC NO NO2 O3 NO3● N2O5 O3 NO2 + Aer R can be lots of stuff with carbon and hydrogen atoms HNO3 H2O ● ● RO2 or HO2 NOx (NO+NO2) Atmospheric Deposition Aerosol Size Distribution Volume Distribution Number Distribution Typical Urban Conditions Based on Whitby, Atmos. Environ., 1978 Aerosol Size Distribution & Composition Volume Distribution Number Distribution Typical Urban Conditions Based on Whitby, Atmos. Environ., 1978 Aerosol Size Distribution Volume Distribution Number Distribution Typical Urban Conditions Based on Whitby, Atmos. Environ., 1978 Aerosol Size Distribution Volume Distribution Number Distribution Typical Urban Conditions Based on Whitby, Atmos. Environ., 1978 Aerosol Size Distribution: Number vs Surface vs Volume • Number Number – Affects the number of cloud droplets that form • Surface Area – Affects the amount of radiation that is scatter or absorbed Surface Area • Volume – Portional to mass, used by the National Ambient Air Quality Standards (NAAQS) – PM10 & PM2.5 standards designed to distinguish coarse and fine particles. Volume Figure 7.6 Seinfeld & Pandis 2.5 mm 10 mm Aerosol Size Representations • • No size representation, simulate only aerosol mass Use few lognormal distributions (e.g, CMAQ uses 3), each characterized by – Total particle number concentrations – Median diameter – Geometric standard deviation • Use sectional bins – Track aerosol mass only, or – Track aerosol number and mass • Mixtures – Internally mixed – all particles within a bin or lognormal distribution have the same chemical composition – Externally mixed – each particle contains one “species”, so species are not mixed – Combination of the two • Effective number of species Neff for sectional bins with number and mass: Neff = (1 + Nspecies) Nmixture Nbin Nspecies = ~ 20 Nmixture = 1-5 Nbin = 4-30 Chemical Tranport Model ¶Cs ¶Cs ¶Cs ¶Cs ¶ æ ¶Cs ö ¶ æ ¶Cs ö ¶ æ ¶Cs ö +u +v +w = çK x ÷ + çKy ÷ + Rs + Ds + Es ÷ + çKz ¶t ¶x ¶y ¶z ¶x è ¶x ø ¶y è ¶y ø ¶zè ¶z ø horizontal change in advection concentration • vertical advection horizontal diffusion chemical emission vertical reaction diffusion deposition Operator splitting -- the equation is split into parts and solved separately: 1) 2) 3) 4) 5) 6) 7) vertical diffusion, emission, & dry deposition horizontal advection vertical advection horizontal diffusion cloud processes (includes aqueous chemistry) gas-phase chemistry aerosol chemistry Horizontal Discretization in CMAQ AIRPACT-3 Example: 12-km x 12-km grids in Lambert Conformal Conic Projection Arakawa C Grid vi,j+1 j+1 Ci,j,s ui+1,j j North Dy East j-1 i-1 i Dx i+1 Vertical Discretization in CMAQ WRF Example: Terrain-Following, Hydrostatic Pressure Grid h= ph - pht phs - pht where Ph = hydrostatic pressure Pressure at model top: pht ~ 10,000 Pa (~ 15 km) ~30-40 levels with first layer height at ~ 40 m wi,k+1 Ci,k,s k+1 ui+1,j k Up Dh East k-1 i-1 i Dx i+1 Figure not to scale Adapted from Figure 2.1 of Skamarock et al., 2008 Vertical Discretization AIRPACT-4 Example CMAQ Grid Cell in 3-Dimension wi,j,k+1 vi,j+1,k ui+1,j,k ui,j,k Up vi,j/2,k North wi,j,k East • • • • Air density Temperature Pressure Water mixing ratios (vapor, rain, snow, ice) • Gas- and aerosol-phase chemical species mixing ratios Why does CMAQ take so long to run? • The nature of chemical transport models: – Gas phase: ~ 100 chemical species – Particle phase: ~20 species, 3-16 size bins effectively ~60-320 species minimum • ODEs governing the chemical reactions: – Nonlinear – Stiff -- eigenvalues of Jacobian : negative; min/max ratio is ~ 109 Figure from Gustafason et al. (2005) (http://www.mmm.ucar.edu/wrf/users/workshop/WS2005 /presentations/sessions8/4-Gustafson.pdf Model Time Steps • WRF: – Physics: recommendation is 6 seconds per km of Dx, i.e., 72 seconds for 12-km x 12-km grids – Radiation: recommendation is 1 minute per km of Dx, i.e., 12 minutes for 12-km x 12-km grids • CMAQ: – Synchronization between all processes: ~ 1-3 min – Adaptive time step within each process CMAQ Model Components http://www.airqualitymodeling.org/cmaqwiki/index.php?title=File:Figure5-1.png CMAQ Model Components • Meteorological fields from a numerical weather model • Usually MM5 or WRF, though other models can also be used Meteorology Example of Layer 1 Temperature and Wind Fields from WRF http://www.airqualitymodeling.org/cmaqwiki/index.php?title=File:Figure5-1.png http://www.atmos.washington.edu/mm5rt CMAQ Model Components • Converts WRF or MM5 output files into CMAQready files • Calculates/diagnoses parameters not provided by WRF (e.g., Monin-Obukhov length) • Calculates dry deposition velocities (depends on landuse type and turbulence characteristics) • Keeps the same horizontal grid cell size • Collapses WRF layers into fewer layers if desired http://www.airqualitymodeling.org/cmaqwiki/index.php?title=File:Figure5-1.png CMAQ Model Components Emissions: Various models/processors, e.g., Transportation Industrial Residential Power Plants Fire Biogenic etc http://www.airqualitymodeling.org/cmaqwiki/index.php?title=File:Figure5-1.png CMAQ Model Components Initial Conditions: • Usually from a previous run • Only ~ 2-3 days for spin-up required http://www.airqualitymodeling.org/cmaqwiki/index.php?title=File:Figure5-1.png CMAQ Model Components Boundary Conditions Using: • “Idealized’ profile, • Results from a coarser, bigger domain CMAQ simulation, or • Results of global CTMs http://www.airqualitymodeling.org/cmaqwiki/index.php?title=File:Figure5-1.png CMAQ Model Components Photolysis Rate Calculations • Using look-up table for clear-sky conditions and adjusted “online” based on cloud conditions http://www.airqualitymodeling.org/cmaqwiki/index.php?title=File:Figure5-1.png CMAQ Model Components Solves ¶Cs ¶Cs ¶Cs ¶C ¶ æ ¶C ö ¶ æ ¶C ö ¶ æ ¶C ö +u +v + w s = ç K x s ÷ + ç K y s ÷ + ç K z s ÷ + Rs + Ds + Es ¶t ¶x ¶y ¶z ¶x è ¶x ø ¶y è ¶y ø ¶zè ¶z ø http://www.airqualitymodeling.org/cmaqwiki/index.php?title=File:Figure5-1.png CMAQ Output • Hourly, 3-dimensional concentrations (.e.g, parts per billion or mg m-3) of chemical species • Hourly accumulated wet and dry deposition (.e.g, kg ha-1 hr-1) for relevant species • netCDF files – same as WRF, but different conventions for date/time – read/write easier with use of Models-3 I/O API library • Examples: – http://lar.wsu.edu/airpact – http://lar.wsu.edu/airpact/gmap/testC.html CMAQ Output : AIRPACT Example 12-km, Surface-Layer, Hourly Concentrations of Secondary Organic Aerosl (SOA) • Lots of stuff at: – AIRPACT-3: http://lar.wsu.edu/airpact – AIRPACT-4: http://lar.wsu.edu/airpact/gmap/testC.html CMAQ Output: Vertical Distribution AIRPACT-4 Output for 10AM PST on Feb 23, 2011 O3 Concentation Parallel Progamming in CMAQ • Distributed Memory using Message Passing Interface (MPI) (WRF supports • OpenMP and MPI) Divide and conquer by horizontal domain decomposition – Similar to WRF, but specifics are different 12 13 14 15 • 8 9 10 11 4 5 6 7 0 1 2 3 For I/O, each processor gets the data for its subdomain by extracting the data from the full domain. However, only one processor is responsible for writing to the output data files; thus, gathering full domain data is required before writing WRF-CMAQ Soft Link Static Geographical Data GEOGRID Global Data METGRID Emission Models UNGRIB Geographical & Large-scale Meteorological Data Interpolated to simulation grids MCIP REAL ICON Initial & Boundary Conditions WRF CCTM BCON Meteorological Fields JPROC Coupled WRF-CMAQ Static Geographical Data GEOGRID Global Data METGRID UNGRIB Geographical & Large-scale Meteorological Data Interpolated to simulation grids Emission Models REAL MCIP Initial & Boundary Conditions WRF call aqprep call cmaq_driver call feedback_read Meteorological Fields ICON CCTM Speciated Aerosol Size Distributions, & O3 Concentrations BCON JPROC WRF-CMAQ Domains CMAQ_COL_DIM delta_x CMAQ_ROW_DIM 5 columns 5 rows CMAQ Domain Max CMAQ Domain delta_y WRF Domain Adapted from Figure 2 of Wong et al., Geosci. Model Dev., 2012 Coupled WRF-CMAQ Computaional Performance Table 1 of Wong et al., Geosci. Model Dev., 2012 WRF only MCIP Offline CMAQ Loose couple system, Total time Coupling system w/o feedback and call frequency ratio 5:1 Coupling system w/ feedback and call frequency ratio 5:1 Execution time CAM RRTMG 0:19:59 0:18:50 0:02:31 0:02:31 1:18:28 1:19:05 1:40:58 1:40:26 1:41:12 1:48:59 1:43:39 2:54:25 Table 2 of Wong et al., Geosci. Model Dev., 2012 Processor configuration w/o feedback CAM speedup w/ feedback 4x8 8x8 8x16 2:05:06 1:19:46 0:55:28 2:08:21 1:21:57 0:55:12 1.57 2.26 speedup 1.57 2.33 w/o feedback RRTMG Speedup w/ feedback 2:13:17 1:24:12 0:56:38 3:19:25 1:58:21 1:14:14 1.58 2.35 Based on 24-hour simulations for a 12-km eastern US domain speedup 1.68 2.69 Some resources • • • • • http://cmaq-model.org http://cmascenter.org/ Seinfeld, J.H. and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, 2006. Jacob, D.J., Introduction to Atmospheric Chemistry, Princeton University Press, 1999. Jacobson, M.Z., Fundamentals of Atmospheric Modeling, Cambridge University Press, 1999
© Copyright 2026 Paperzz