MAE 208: Homework 5 Due: Wednesday 11/4/2009 Problem 1 (10 pts): Prove that dω t dr t d ω t r t r t ω t . dt dt dt Solution: The left hand side is: 1 r1 2 r3 3 r2 d d d ω t r t 2 r2 3 r1 1r3 dt dt dt r r 2 1 3 r3 1 2 2 r3 2 r3 3r2 3 r2 d ω t r t 3r1 3r1 1r3 1r3 dt 1r2 1r2 2 r1 2 r1 The right hand side: 1 r1 1 r1 r t ω t 2 r2 2 r2 dt dt 3 r3 3 r3 2 r3 3r2 2 r3 3r2 dω t dr t r t ω t 3 r1 1r3 3 r1 1r3 dt dt 1r2 2 r1 1r2 2 r1 2 r3 3r2 2 r3 3 r2 dω t dr t r t ω t 3r1 1r3 3 r1 1r3 dt dt 1r2 2 r1 1r2 2 r1 dω t dr t Inspection of the two shows that they are the same. 1|Page Homework 5 Problem 2 (30 pts): The rolling airframe missile (RAM) is a quick-reaction self defense system for the U.S. Navy. The system is designed to protect against incoming anti-ship cruise missiles. The system consists of a platform that can rotate and control the elevation angle, Figure 1 (a). (a) (b) Figure 1. Rolling Airframe Missile (RAM): photograph [Wikipedia] (a); schematic (b) Suppose that a given instant a missile is fired from rest with a magnitude of acceleration of am with respect to the missile launcher and in a direction normal to the face of the launcher. At the same time, the base is rotating with an angular velocity and acceleration of 1 and 1 , respectively, and the launcher is rotating with angular velocity and acceleration 2 of and 2 . The base has a radius of r1 . The supports have a height of h1 and a thickness of l1 . The distances to the missile from the pivot point of the missile launcher are shown in Figure 1(b) – x2 , y2 , and z2 . Determine the acceleration of the missile being fired at this instant with respect to the fixed coordinate system ( x , y , and z ). (Hint: Clearly set up and keep track of your coordinate systems, work with vectors, and make use of Maple to determine the cross products). Solution: Let’s consider two coordinate systems – one is the original coordinate system ( xyz ) and the other coordinate system is attached to the missile launcher ( x ' y ' z ' ). 2|Page Homework 5 Figure 2. Coordinate systems for RAM The “prime” coordinate system can be transformed from the original coordinate system using a rotation about x and a rotation about z . Any vector Q in the x ' y ' z ' coordinate system can be transformed to the xyz coordinate system using: Q xyz R u 2 R z 1 Q 2 x' y'z' where cos 1 sin 1 0 2 2 sin 1 cos 1 0 R z 1 sin 1 cos 1 0 cos 1 sin 1 0 2 2 2 0 0 1 0 0 1 and Ru 2 is a rotation about x' (For more information see http://en.wikipedia.org/wiki/Rotation_matrix or Chapter 20 notes): 3|Page Homework 5 1 cos 2 1 cos 2 1 cos 2 sin 1 cos 1 1 cos 2 cos 1 sin 2 2 2 R u 2 sin 1 cos 1 1 cos 2 cos 1 cos 2 cos 2 cos 1 sin 1 sin 2 cos 1 sin 2 sin 1 sin 2 cos 2 First consider the acceleration of the missile with respect to the point where the support connects to the missile launcher (Point B). In the prime coordinate system, we get: am/B x ' y ' z ' am x ' y ' z ' α 2 rB/ 2 ω2 ω2 rB/ 2 am/B x ' y ' z ' 0 2 y2 2 2 y2 am 0 x2 0 0 x2 0 0 z2 0 0 z2 am/B x ' y ' z ' 0 2 am 2 z2 2 x2 2 x2 2 2 z2 Now find the acceleration of point B fixed Cartesian coordinate system: aB xyz α1 rB ω1 ω1 rB 0 r1 l1 sin 1 0 0 r1 l1 sin 1 aB xyz 0 r1 l1 cos 1 0 0 r1 l1 cos 1 1 aB xyz h1 1 1 h1 1 r1 l1 cos 1 12 r1 l1 sin 1 1 r1 l1 sin 1 12 r1 l1 cos 1 0 Finally, we have: am aB am/B But two add these two vectors we need to be in the same coordinate system: am xyz aB xyz am/B xyz where: 4|Page Homework 5 1 am/B x ' y ' z ' 2 am/B xyz R u 2 R z am/B xyz cos 1 cos 2 am 2 z2 2 2 x2 sin 2 2 x2 2 2 z2 sin 1 cos 2 am 2 z2 2 2 x2 sin 2 2 x2 2 2 z2 sin 2 am 2 z2 2 2 x2 cos 2 2 x2 2 2 z2 Finally: am xyz 1 r1 l1 cos 1 12 r1 l1 sin 1 cos 1 cos 2 am 2 z2 2 2 x2 sin 2 2 x2 2 2 z2 r l sin 2 r l cos sin cos a z 2 x sin x 2 z 1 1 1 1 1 1 2 m 2 2 2 2 2 2 2 2 2 1 1 1 sin 2 am 2 z2 2 2 x2 cos 2 2 x2 2 2 z2 Problem 15-102: Using conservation of angular momentum, we have: H1 H 2 r1mv1 r2 mv2 2 ft 5 ft / s 1 ft v2 v2 10 ft / s We can find the work done by the rope by using the Principle of Work and Energy. Note that the final velocity of the block has to include the tangential and radial velocity: v 2 vr2 vt2 42 102 116 ft 2 / s 2 Therefore the work is: 1 2 1 mv1 W1 2 mv22 2 2 1 8 2 W1 2 116 5 2 32.2 W1 2 11.3 ft lb 5|Page Homework 5 Problem 16-29: The angular velocity of shaft S at 2 seconds is: d dt 4 3 d dt f 1 3 d 0 1 4 1 1 2 4f 16 16 f 2.397 rad / s 2 dt We can relate the angular velocity of shaft S to shaft E using: S rA BC rB BC rC DE rD S rA rC DE rD rB DE S rA rC 20 30 2.397 .1498 rad / s rB rD 80 120 Problem 16-47: The total length of the rope between B and D can be found using the law of cosines: 2 sBD 102 102 200 cos sBD 200 1 cos Therefore the total length of the rope is: l s A sBD s A 200 1 cos Take a time derivative gives us velocity: 6|Page Homework 5 d d d l sA 200 1 cos dt dt dt 1/2 1 0 v A 200 1 cos sin 2 sin vA 2 200 1 cos Taking one more time derivative gives acceleration: sin d dt 2 200 1 cos sin cos sin 2 aA 2 200 1 cos 2 200 1 cos 4 200 1 cos aA aA 2 sin 2 4 200 1 cos 3/2 3/2 sin 2 cos 2 200 1 cos Problem 16-74: Since shaft S is not rotating, the velocity where planet pinion A contacts S is 0. However, the velocity of the center of A can be found using CD: vA CD rCD 8 .125 m 1m / s Therefore the angular velocity of A is: A rA v A A 1m / s 20 rad / s .05 m The velocity of the point where A contacts the ring is: vR A 2rA 20rad / s 2 0.05 m 2 m / s Finally the angular velocity of the ring is: R vR 2 m / s 11.43 rad / s rR .175 m Problem 16-90: 7|Page Homework 5 Since B is not slipping the velocity at A will be: vA rA/ B r2 r1 Problem 16-143: If we pin the fixed and rotating coordinates to rod AB, we have the following coordinate system. Figure 3. Coordinate system for problem 16-143 The velocity of collar C using rod CD is: vC ωCD rC/ D vC CDk 2cos 60o i 2sin 60o j vC 2CD cos 60o j 2CD sin 60o i In the rotating reference frame, the velocity of collar C is: v C Ω AB rC/ A vC xyz v C 5k 2i vC xyz i v C 10 j vC xyz i Relating components yields: 10 2CD cos 60o CD 10 rad / s vC xyz 2CD sin 60o vC xyz 17.32 ft / s The acceleration of collar C using rod CD is: 8|Page Homework 5 2 aC α CD rC/ D CD rC/ D aC CDk 2 cos 60o i 2sin 60o j 102 2 cos 60o i 2sin 60o j aC 2 CD cos 60o 200sin 60o j 2 CD sin 60o 200 cos 60o i In the rotating reference frame, the acceleration of collar C is: aC Ω rC/ A Ω Ω rC/ A 2Ω v C xyz aC xyz aC 12k 2i 52 2i 2 5k 17.32 i aC xyz i aC 24 j 50i 173.2 j aC xyz i Relating components gives: 24 173.2 2 CD cos 60o 200sin 60o CD 24 rad / s 50 aC xyz 2 CD sin 60o 200 cos 60o aC xyz 8.43 ft / s 9|Page Homework 5
© Copyright 2026 Paperzz