TERENCE STRICK [email protected] CNRS/CR1 & Chef d’Équipe Institut Jacques Monod 2 Place Jussieu 75251 Paris Cedex 05 France Tel : +33 1 44 27 81 75 Postes Professionnels 2004- CNRS CR1 et Chef d'Equipe "Nanomanipulation de Biomolécules" à l’Institut Jacques Monod (CNRS UMR 7592 et Universités de Paris VI et VII). Postdoc Indépendant "Cold Spring Harbor Fellow" (Cold Spring Harbor Laboratory de Jim Watson, USA) Éducation 1996-1999 Thèse d’université sur la nanomanipulation d’une molécule individuelle d’ADN (Univ. Paris VII) 1995-1996 DEA Biologie Cellulaire et Moléculaire (Université de Paris VI), reçu premier. 1994-1996 Magistère Interuniversitaire de Physique (ENS), Mention Bien. 1994 Admis à l’Ecole Normale Supérieure, Paris, France (Concours G/S). Bacherlor’s Degree in Physics, Princeton University, USA (Mention Bien). Prix et Bourses 2008 2008-2013 2005 2005 2005 2000 1996-1999 ERC Starting Grant Nominee EURYI Research Award (1 250 000 € sur 5 ans) Programme « Jeune Chercheur » de l’EMBO. Médaille d’argent de la Ville de Paris Grand Prix Mergier-Bourdeix de l’Académie des Sciences (France) Prix “Jeune Chercheur” de la Société Française de Biophysique Bourse de thèse “BDI” du CNRS. Brevets Apparatus and method for the manipulation and testing of molecules, and in particular of DNA T.R. Strick , J.-F. Allemand, D. Bensimon, A. Bensimon and V.Croquette, US Patent 7,244,391 (accordé 17/7/2007) Apparatus and method for the manipulation and testing of molecules, and in particular of DNA T.R. Strick , J.-F. Allemand, D. Bensimon, A. Bensimon and V.Croquette, US Patent 7,052,650 (accordé 30/5/2006) SINGLE MOLECULE STUDIES OF GENE TRANSCRIPTION BY THE RNA POLYMERASE MOLECULAR MOTOR A molecular motor is an atomic-scale system which can convert chemical energy into unidirectional motion and thus mechanical work. Enzymes such as DNA and RNA polymerases are particularly unique biomolecular motors as they also convert chemical energy into a new copy of the information stored on an original DNA strand. The precise ways in which such motors may convert chemical energy into mechanical energy is starting to come to light, thanks to efforts in a range of fields including biochemistry, structural biology, genetics, and biophysics. Here we will discuss the development of biophysical methods which permit real-time analysis of individual biomolecular motors as they interact, and describe their use for the study of DNA transcription by RNA polymerase. By nanomanipulating a single DNA molecule, we are able to use the DNA as an ultra-sensitive detector for following interactions with a single molecule of RNA polymerase (RNAP) in realtime. This allows us to detect and analyze the RNAP/DNA interaction at each of the fundamental stages of transcription: intial binding of RNAP to so-called "promoter" DNA, unwinding by RNAP of promoter DNA, escape of RNAP from promoter DNA, elongation of RNA strand templated on downstream DNA, and release of RNA strand and RNAP fom DNA at the socalled "termination" site. To illustrate the above considerations, we will discuss the chemical and mechanical coupling which occurs in the RNAP molecular motor as it escapes from the promoter.
© Copyright 2025 Paperzz