TERENCE STRICK strick@ijm

TERENCE STRICK [email protected]
CNRS/CR1 & Chef d’Équipe
Institut Jacques Monod
2 Place Jussieu
75251 Paris Cedex 05 France
Tel : +33 1 44 27 81 75
Postes Professionnels
2004- CNRS CR1 et Chef d'Equipe "Nanomanipulation de Biomolécules" à l’Institut Jacques
Monod (CNRS UMR 7592 et Universités de Paris VI et VII).
Postdoc Indépendant "Cold Spring Harbor Fellow" (Cold Spring Harbor Laboratory de Jim
Watson, USA)
Éducation
1996-1999
Thèse d’université sur la nanomanipulation d’une molécule individuelle d’ADN
(Univ. Paris VII)
1995-1996
DEA Biologie Cellulaire et Moléculaire (Université de Paris VI), reçu premier.
1994-1996
Magistère Interuniversitaire de Physique (ENS), Mention Bien.
1994
Admis à l’Ecole Normale Supérieure, Paris, France (Concours G/S).
Bacherlor’s Degree in Physics, Princeton University, USA (Mention Bien).
Prix et Bourses
2008
2008-2013
2005
2005
2005
2000
1996-1999
ERC Starting Grant Nominee
EURYI Research Award (1 250 000 € sur 5 ans)
Programme « Jeune Chercheur » de l’EMBO.
Médaille d’argent de la Ville de Paris
Grand Prix Mergier-Bourdeix de l’Académie des Sciences (France)
Prix “Jeune Chercheur” de la Société Française de Biophysique
Bourse de thèse “BDI” du CNRS.
Brevets
Apparatus and method for the manipulation and testing of molecules, and in particular of DNA
T.R. Strick , J.-F. Allemand, D. Bensimon, A. Bensimon and V.Croquette, US Patent 7,244,391
(accordé 17/7/2007)
Apparatus and method for the manipulation and testing of molecules, and in particular of DNA
T.R. Strick , J.-F. Allemand, D. Bensimon, A. Bensimon and V.Croquette, US Patent 7,052,650
(accordé 30/5/2006)
SINGLE MOLECULE STUDIES OF GENE TRANSCRIPTION BY THE RNA POLYMERASE
MOLECULAR MOTOR
A molecular motor is an atomic-scale system which can convert chemical energy into
unidirectional motion and thus mechanical work. Enzymes such as DNA and RNA polymerases
are particularly unique biomolecular motors as they also convert chemical energy into a new
copy of the information stored on an original DNA strand. The precise ways in which such
motors may convert chemical energy into mechanical energy is starting to come to light, thanks
to efforts in a range of fields including biochemistry, structural biology, genetics, and biophysics.
Here we will discuss the development of biophysical methods which permit real-time analysis of
individual biomolecular motors as they interact, and describe their use for the study of DNA
transcription by RNA polymerase.
By nanomanipulating a single DNA molecule, we are able to use the DNA as an ultra-sensitive
detector for following interactions with a single molecule of RNA polymerase (RNAP) in realtime. This allows us to detect and analyze the RNAP/DNA interaction at each of the
fundamental stages of transcription: intial binding of RNAP to so-called "promoter" DNA,
unwinding by RNAP of promoter DNA, escape of RNAP from promoter DNA, elongation of RNA
strand templated on downstream DNA, and release of RNA strand and RNAP fom DNA at the socalled "termination" site. To illustrate the above considerations, we will discuss the chemical
and mechanical coupling which occurs in the RNAP molecular motor as it escapes from the
promoter.