Mathematics for Computer Science MIT 6.042J/18.062J Generating Functions Albert R Meyer, April 26, 2013 genfuncintro.1 Infinite Geometric Series S(x) ::= 1+ x + x + + x + 2 n xS(x) = x + x + + x + 2 Albert R Meyer, April 26, 2013 n genfuncintro.2 Infinite Geometric Series S(x) ::= 1+ x + x + 2 xS(x) = x + x + 2 +x + n +x + n S(x)−xS(x) = 1 S(x) = Albert R Meyer, April 26, 2013 genfuncintro.3 Infinite Geometric Series S(x) ::= 1+ x + x + 2 xS(x) = x + x + 2 +x + n +x + n S(x)−xS(x) = 1 1+ x + x + 2 +x + Albert R Meyer, n April 26, 2013 = genfuncintro.4 Ordinary Generating Functions The ordinary generating function for the infinite sequence 〈g0, g1, g2, , gn, 〉 is the power series: G(x) = g0 + g1x + g2x2 + + gn xn + Albert R Meyer, April 26, 2013 genfuncintro.6 Infinite Geometric Series “corresponds to” 1, 1, 1, … = 1+x+x + 2 Albert R Meyer, April 26, 2013 1 1-x genfuncintro.7 Coefficients Albert R Meyer, April 26, 2013 genfuncintro.8 Infinite Geometric Series 1+ x + x + 2 1 = 1-x +x + n take derivatives 1+ 2x + Albert R Meyer, + nx + n-1 1 = 2 (1 - x) April 26, 2013 genfuncintro.9 Infinite Geometric Series “corresponds to” 1, 2, 3, … 1+ 2x + 3x + + nx + 2 n-1 1 = 2 (1 - x) Albert R Meyer, April 26, 2013 genfuncintro.10 Gen Func for “corresponds to” 1, 2, 3, … 1 = 2 (1 - x) Albert R Meyer, April 26, 2013 genfuncintro.11 Gen Func for Albert R Meyer, April 26, 2013 genfuncintro.12 right shift by times x Albert R Meyer, April 26, 2013 genfuncintro.13 Gen Func for x = 2 (1- x) 2 0+ x + 2x + + nx + 0,1, 2, 3, … “corresponds to” Albert R Meyer, n April 26, 2013 genfuncintro.15
© Copyright 2026 Paperzz