Current practice of PM-measurements, data processing, interpretation and visualization in Belgium Frans Fierens scientific staff member of the Flemish Environment Agency (VMM) at the Belgian Interregional Environment Agency (IRCEL) PM_lab workshop, 2010 March 4 IRCEL-CELINE ? NL : Intergewestelijke Cel voor het Leefmilieu FR : Cellule Interrégionale de l'Environnement EN : Belgian Interregional Environment Agency Agreement between the 3 Belgian Regions (1994) • Major tasks : • • • • • SMOG (winter/summer) warnings (IDPC) Interregional Calibration Bench Interregional AQ Database (3 Regions) Scientific support Reports EU-COM / Experts EU-working groups Contents 1. Choice of PM-Measurement locations 2. Calibration of PM-Measurements - equipment 3. Future technical development in the next 2-3 years 4. Data acquisition - Handling of PM-data 5. Spatial Interpolation of PM-point data 6. Forecast Modelling (deterministic / statistical models). Contents 1. Choice of PM-Measurement locations 2. Calibration of PM-Measurements - equipment 3. Future technical development in the next 2-3 years 4. Data acquisition - Handling of PM-data 5. Spatial Interpolation of PM-point data 6. Forecast Modelling (deterministic / statistical models). Number of PM10 and PM2.5 monitoring stations 60 60 50 50 40 40 Wallonia 30 Brussels Flanders 20 # PM2.5 stations # PM10 stations • PM10 : start measurements in 1996 • PM2.5 : start measurements in 2000 30 20 10 10 0 0 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 PM10 (telemetric stations) PM2.5 (telemetric stations) (>90% valid daily averages) (>90% valid daily averages) Beside PM : also BC and Black Smoke measurements Location of PM10 telemetric stations PM10 : monitoring stations Locations mostly : - Industrial - Urban or Urban Background Very few “rural” and “traffic” stations (Historical reasons) Location of PM2.5 telemetric stations PM2.5 : monitoring stations Locations mostly : - Industrial - (Sub) Urban Very few “rural” and “traffic” “AEI stations” : -Bruges(*) -Ghent (*) -Antwerp : 2 (*) -Brussels : 2 -Liège -Charleroi (*) not on the map Contents 1. Choice of PM-Measurement locations 2. Calibration of PM-Measurements - equipment 3. Future technical development in the next 2-3 years 4. Data acquisition - Handling of PM-data 5. Spatial Interpolation of PM-point data 6. Forecast Modelling (deterministic / statistical models). PM measuring techniques in Belgium 1. Flanders - Oscillating Micro Balans (TEOM and TEOM-FDMS) Bèta Absorption (ESM FH62I-R) Gravimetric : - Equivalence tests PM2.5 (to calculate the Average Exposure Index “AEI” on urbanbackground locations, started in 2009) + 1 Rural background location 2. Brussels - Oscillating Micro Balans (only TEOM-FDMS since 2004-2005) 3. Wallonia - Bèta Absorption (MP101 integration time 24h) - Optical techniques (GRIMM) Automatic PM monitors <> EU reference method PROBLEM : automatic monitors <> EU (gravimetric) reference method NO PROBLEM : When “equivalence” is demonstrated Current “calibration” of PM in Belgium PM10 ESM TEOM TEOM-FDMS GRIMM currently used calibration factors 1.37 1.47 1 1 Equivalence after "correction" (*) yes yes yes yes (**) PM2.5 ESM TEOM TEOM-FDMS GRIMM currently used calibration factors 1.46 1.75 1 0.85 Equivalence after "correction" (*) yes yes yes yes (**) (*) based on the ‘guide for the demonstration of equivalence of ambient air monitoring methods’ (Excel templates from the JRC) (**) preliminary results of an equivalence program in Wallonia result in somewhat higher calibration factors New comparative campaign (VMM) : PM10 “calibration” factors calculated in new campaign are slightly higher than previously “Comparative PM10 and PM2.5 measurements in Flanders (Belgium)”, VMM, Period 2006 - 2007 (www.vmm.be) First comparative campaign (VMM) : PM2.5 Higher “calibration” factors for PM2.5 than for PM10 -> higher volatile fraction “Comparative PM10 and PM2.5 measurements in Flanders (Belgium)”, VMM, Period 2006 - 2007 (www.vmm.be) Spatial and temporal variation of calibration factors Contents 1. Choice of PM-Measurement locations 2. Calibration of PM-Measurements - equipment 3. Future technical development in the next 23 years 4. Data acquisition - Handling of PM-data 5. Spatial Interpolation of PM-point data 6. Forecast Modelling (deterministic / statistical models). Future technical development in the next 2-3 years (1) Flanders : - More “Chemkar” campaigns ( PM10 “hotspots”,Rural vs Urban PM10 & PM2.5, Antwerp harbour, …) - Measuring the effect of Woodburning on PM (levoglucosan) - Additional measuring stations (e.g. Streetcanyon NO2/PM) - Testing of new Bèta-monitors (BAM1020, FAI SWAM 5DC) - UFP measurements (streets) - Further participating in CEN/TC264/WG15 : * revision of the PM10 standard EN12341 * revision of the PM2.5 standard EN14907 Future technical development in the next 2-3 years (2) Brussels : - “Black Carbon” measurements - “Counting Particles” (using GRIMM monitors) Wallonia : - additional measuring stations (e.g. Tournai, Namur) - EC/OC analyser at Vielsalm (Rural background) Interregional (IRCEL-CELINE) : - further developing Interpolation techniques (eg. use of satellite observations like AOD) - higher spatial resolution modelling (forecasts + assessment) - implementation of data assessment techniques Contents 1. Choice of PM-Measurement locations 2. Calibration of PM-Measurements - equipment 3. Future technical development in the next 2-3 years 4. Data acquisition - Handling of PM-data 5. Spatial Interpolation of PM-point data 6. Forecast Modelling (deterministic / statistical models). Data acquisition of automatic measurements Monitoring station RDRC “Regional Data Processing Centers” Every hour (26’ after each hour) -> ½ - hourly measurements IRCEL -> FTP to IRCEL servers -> calculation of hourly / 8-hourly / 24-hour averages. -> publication real-time data + maps on websites “Real-Time” publication on websites - tables “Real-Time” publication on websites - maps Contents 1. Choice of PM-Measurement locations 2. Calibration of PM-Measurements - equipment 3. Future technical development in the next 2-3 years 4. Data acquisition - Handling of PM-data 5. Spatial Interpolation of PM-point data 6. Forecast Modelling (deterministic / statistical models). How to define a scientifically based methodology for assessment of spatial representativeness? CORINE land use map RIO-Corine interpolation • Observation: • Sampling values depend on land use in (direct) vicinity of the monitoring site • Consequence: • Interpolation scheme needs to know this relation between land use and air quality levels • Approach : • Create land use indicator to express this relation VITO + IRCEL developed the RIO-corine methodology RIO - Land use indicator (1) Land use indicator 43R240 2 km 400 42N016 43N073 350 43R240 300 Number of grid cells in buffer For each station: Determine buffer (e.g. 2km radius) Characterize land use by CORINE class distribution inside buffer 250 200 150 100 50 0 0 5 10 15 20 CORINE Class 25 30 35 40 RIO - Land use indicator (2) Land use indicator is based on CORINE class distribution week 60 rural 55 urb back urb 50 ind traff CORINE log 1 ai .nCORINE class i i CORINE class i n i PM 10 [ g/m 3 ] 45 40 35 30 25 <PM10> 20 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 week 140 rural urb back 120 urb ind traff 100 3 NO 2 [ g/m ] Calibration of coefficients ai : multi-regression to optimize trend for mean and standard dev. of monitoring data 15 80 60 40 <NO2> 20 0 0 0.5 1 1.5 Kriging interpolation of “detrended” data ‘Kriging’ condition = ‘spatialy’ homogeneous data Use relation between land use indicator and AQ statistics to “detrend” monitoring data: Remove local character of sampling values 90 80 70 C [µg/m³] 60 C 50 40 30 20 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 RIO-corine methodology Correlation <-> distance (1) Kriging map (2) DC map 90 80 Legend delta C [µg/m³] Legend Kriging [µg/m³] 70 60 C [µg/m³] 1. Detrend sampling values 2. Interpolate detrended values with Ordinary Kriging 3. Determine local value 4. Get corresponding trend shift (C) 5. Add C to interpolation result C 50 40 78 - 85 -4 - 0 86 - 87 1 - 21 88 - 90 22 - 27 91 - 95 28 - 33 96 - 99 34 - 39 100 - 109 40 - 52 (3) RIO map 30 20 10 Legend RIO map [µg/m³] 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 34 - 43 44 - 52 53 - 61 62 - 68 69 - 75 76 - 126 Valdidation – “leaving-one-out” Compare with standard IDW and OK Model O3 RMS E Bias NO2 PM10 RMSE Bias RMSE Bias IDW 10.97 -1.70 18.17 4.74 12.12 1.70 OK 10.37 -0.44 16.85 1.45 11.65 1.22 RIO 9.56 14.45 -0.67 9.89 0.01 -0.08 Valdidation – using “independent” measurements R² = 0.90 MAE = 2.9 µg/m³ RMS = 4.3 µg/m³ 90 observations 80 RIO-corine interpolated 70 60 50 40 30 20 10 Average observations : 30.6 µg/m³ Average RIO-c interpolation : 31.5 µg/m³ 20050110 20050105 20041231 20041226 20041221 20041216 20041211 20041206 20041201 20041126 20040726 20040721 20040716 20040711 20040706 20040701 20040626 0 Annual mean PM10 concentrations 2006 Ordinary Kriging RIO-corine Annual average NO2 concentrations 2002 OK Legend NO2 [µg/m³] RIO Legend NO2 [µg/m³] error error 1 - 10 1 - 10 11 - 12 11 - 12 13 - 14 13 - 14 15 - 17 15 - 17 18 - 20 18 - 20 21 - 23 21 - 23 24 - 26 24 - 26 27 - 29 27 - 29 30 - 33 30 - 33 > 33 > 33 RIO-corine : further developments (1) NO2 - 4x4 km Legend NO2 [µg/m³] error < 10 11 - 12 13 - 14 15 - 17 18 - 20 21 - 23 24 - 26 27 - 29 30 - 33 > 33 NO2 - 1x1 km RIO-corine : further developments (2) New proxy : AOD (aerosol optical Depth) ? Total Column AOD 2006 Source : Modis Terra satelite, 2006 RIO-corine : more info “Spatial interpolation of air pollution measurements using CORINE landcover data ” Janssen Stijna, Dumont Gerwinb, Fierens Fransb, Mensink Clemensa aFlemish Institute for Technological Research (VITO),Boeretang 200, B-2400 Mol, Belgium bBelgian Interregional Cell Environment Agency(IRCEL), Kunstlaan 10-11, B-1210 Brussels, Belgium Atmospheric Environment 42/20 (2008) 4884-4903 Contents 1. Choice of PM-Measurement locations 2. Calibration of PM-Measurements - equipment 3. Future technical development in the next 2-3 years 4. Data acquisition - Handling of PM-data 5. Spatial Interpolation of PM-point data 6. Forecast Modelling (deterministic / statistical models). Goal of Air Quality forecasts ? - Information of the public (see ozone EU info/alert thresholds) - Activation winter SMOG action plans Polluant : PM10 (FORECASTED PM10 > 70 µg/m³, for twoPlan consecutive : 1 niveau days) Flanders Brussels Wallonia Polluants : PM10 et NO2 Plan : 3 niveaux Polluant : PM10 Plan : 3 niveaux Two different types of models 1. Deterministic models • Complex input : meteo, emissions, geografical information, fysicochemical processes • Long CPU -> CHIMERE (forecasts) / BelEUROS (emission scenario’s) 2. Statistical or neural-network models • Simple input : database with measurements, some simple forecasted meteo parameters • Short CPU (minutes) -> SMOGSTOP (Ozone) / OVL (PM10, NO2) CHIMERE : simple schematic overview Example Temperature NOx emissions combustion CHIMERE – Example (1) Forecast for 21/6/2005 Observations 21/6/2005 CHIMERE – Example (2) OVL : schematically Input: •PM10 measurements day-1 •Meteo forecasts Neural Process: Output : Network PM10 daily mean day0, +1, +2, +3 and +4 OVL : most important meteo-input parameter Temperature Inversion Boundary Layer Height Low windspeeds OVL : PM10 – winter/spring 2005 forecast day +1 140 R=0.7 metingen OVL model 120 100 µg/m³ 80 60 40 20 0 01/01/05 01/02/05 Antwerp (monitoring station 42R801) 01/03/05 01/04/05 OVL : more info “A neural network forecast for daily average PM10 concentrations in Belgium” Hooyberghs Jefa, Mensink Clemensa, Dumont Gerwinb, Fierens Fransb, Brasseur Olivierc aFlemish Institute for Technological Research (VITO),Boeretang 200, B-2400 Mol, Belgium bInterregional Cell for the Environment (IRCEL), Kunstlaan 10-11, B-1210 Brussels, Belgium cRoyal Meteorological Institute (RMI), Ringlaan 3, B-1180 Brussels, Belgium Atmospheric Environment 39/18 (2005) 3279-3289 Dank voor uw aandacht ! Je vous remercie de votre attention ! Wir danken Ihnen für Ihre Aufmerksamkeit ! Thank you for your attention ! More info : www.ircel.be www.vmm.be
© Copyright 2026 Paperzz