ES 250 First Midterm Practice Exam 2 1. i a = _−0.333__A, i b = ___1____A, i 2 = __0.333__A, and v1 = _−1.333__V Use equivalent resistances to reduce the circuit to From KCL i b = 4 i a + i a ⇒ i b = −3 i a . From KVL 12 i a + 10 i b − 6 = 0 ⇒ 12 i a + 10 ( −3 i a ) = 6 So i a = − 1 A , v a = −4 A and i b = 1 A . 3 Returning our attention to the original circuit, notice that i a and i b were not changed when the circuit was reduced. Now v1 = ( 5 || 20 ) i a = ( 4 )( −0.333) = −1.333 V and i 2 = 12 i = 0.333 A . 12 + 24 b 2. The current in the 20-Ω resistor is i = ____−1.25___A. a The voltage across the 10-Ω resistor is v = ____−30_____V. b The (independent) voltage source current is i = __−4.25____A. c 25 = −1.25 A . 20 From KVL 4 i a − v b + 20 i a = 0 ⇒ v b = 24 i a = 24 ( −1.25 ) = −30 V From Ohm’s law i a = − From KCL i c = i a + vb 10 = −1.25 + −30 = −4.25 A 10 The Ohmmeter measures equivalent resistance. 3. a. To cause R eq = 12 Ω, choose R = ___16__Ω. b. If R = 14 Ω then R eq = ___11.5____Ω. R eq = 2 + ( 20 || ( 4 + R ) ) . When R eq = 12 Ω then 12 = 2 + ( 20 || ( 4 + R ) ) ⇒ 10 = 20 ( 4 + R ) ⇒ 24 + R = 2 ( 4 + R ) ⇒ R = 16 Ω 20 + ( 4 + R ) When R = 14 Ω then R eq = 2 + ( 20 || ( 4 + 14 ) ) = 2 + ( 20 ||18 ) = 2 + 4. 20 (18 ) = 11.4736 Ω 20 + 18 Consider this combination of resistors. Let R p denote the equivalent resistance. (a) Suppose 40 Ω ≤ R ≤ 400 Ω. Determine the corresponding range of values of R p : ___53.33__ Ω ≤ R p ≤ __117.33___ Ω (b) Suppose instead R = 0 (a short circuit). Then R p = ___32____ Ω (c) Suppose instead R = ∞ (an open circuit). Then R p = ___160___ Ω (d) Suppose instead the equivalent resistance is R p = 80 Ω. Then R = ___120___ Ω 160 ( 80 ) 160 = = 53.33 Ω . 160 + 80 3 160 ( 440 ) 16 ( 44 ) When R = 400 Ω then R p = 160 || ( 40 + 400 ) = 160 || 440 = = = 117.33 Ω . 160 + 440 6 160 ( 40 ) 16 ( 4 ) When R = 0 then R p = 160 || ( 0 + 40 ) = 160 || 40 = = = 32 Ω . 160 + 40 2 When R = 40 Ω then R p = 160 || ( 40 + 40 ) = 160 || 80 = When R = ∞ then R p = 160 || ( ∞ + 40 ) = 160 || ∞ = When R p = 80 Ω then 80 = 160 || ( R + 40 ) = 1 1 1 + 160 ∞ = 160 Ω . 160 ( R + 40 ) 160 ⇒ R + 200 = ( R + 40 ) = 2 R + 80 ⇒ R = 120 Ω . 160 + R + 40 80 5. Here’s a single circuit drawn in four parts for convenience. The four parts are connected by the dependent sources. Given that i1 = 0.8 A, determine the values of R1 , v 2 , v 3 , and i 4 . R1 = ____5____Ω , v 2 = ____−4____V, v 3 = ___2___V and i 4 = __−0.96____A. 1 ⎛ 24 ⎞ 12 0.8 = ⎜ ⇒ R1 + 10 = = 15 ⇒ R1 = 5 Ω ⎟ 2 ⎜⎝ R1 + 10 ⎟⎠ 0.8 1 20 || 80 16 v 2 = − ⎡⎣15 ( 0.8 ) ⎤⎦ = −4 V , v 3 = 10 ( 0.8 ) = 8=2 V 3 48 + ( 20 || 80 ) 48 + 16 i4 = − 6. 40 || 40 1 2.4 ( 0.8 ) = − (1.92 ) = −0.96 A 2 ( 40 || 40 ) + 20 Encircled numbers are node numbers. The corresponding node voltages are: v1 = 12 V, v 2 = 10.5 V and v 3 = 6 V The value of the gain of the CCCS is k = ____5.00_____ A/A. The resistance of the resistor at the top of the circuit is R = __600_____Ω. (Round to an integer.) The power supplied by the independent (0.1 A) current source is ____−0.6___W. ia = 12 − 10.5 10.5 − 6 = 0.015 A , i b = = 0.09 A 100 50 i c + i b = 0.1 ⇒ i c = −0.09 + 0.1 = 0.01 A ia + k ia = ib ⇒ k i a = i b − i a = 0.09 − 0.015 = 0.075 A k= k ia ia = 0.075 12 − 6 6 = 5 A/A , R = = = 600 Ω and the power is − ( 6 )( 0.1) = −0.6 W 0.015 ic 0.01 Let i1, i2 and i3 denote the mesh currents in meshes 1, 2 and 3, respectively. 7. Determine the values of these mesh currents: i1 = ____2____A and i2 = ____−3_____A Determine the value of the resistance R: R = _____5_______ Ω i 2 = −3 A , i1 − i 2 = 5 ⇒ i1 = 2 A , i 3 = −1 A . The applying KVL to mesh 3 gives 2 ( i 3 − i1 ) + 4 i 3 + R ( i 3 − i 2 ) = 0 ⇒ R = − 2 ( i 3 − i1 ) + 4 i 3 i3 − i2 =− 2 ( −1 − 2 ) + 4 ( −1) =5Ω −1 − ( −3)
© Copyright 2026 Paperzz