SUCCINATE METABOLISM AND TRICARBOXYLIC ACID CYCLE A C T I V I T Y IN PSEUDOMONAS AERUGINOSA by NARAYAN PRASAD TI WAR I o f J a b a l p u r , 1957 B.V.Sc, University M.Sc, Panjab University, 19&3 A T H E S I S SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n t h e Department of Microbiology We a c c e p t this t h e s i s as conforming required to the standard THE UNIVERSITY OF B R I T I S H COLUMBIA April, 1969 In p r e s e n t i n g an this thesis advanced degree at the Library I further for shall the in p a r t i a l U n i v e r s i t y of make i t f r e e l y agree that f u l f i l m e n t o f the permission British available for for extensive s c h o l a r l y p u r p o s e s may be g r a n t e d b y t h e by his of this written representatives. thes.is f o r f i n a n c i a l gain permission. Department o f Microbiology The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada Date It i s understood 30 A p r i l 1969 Columbia shall Columbia, I agree r e f e r e n c e and copying o f this for that Study. thesis Head o f my D e p a r t m e n t o r that not requirements copying o r p u b l i c a t i o n b e a l l o w e d w i t h o u t my ii ABSTRACT Although in the importance o f t r i c a r b o x y l i c a c i d c y c l e the metabolism o f aerobic s t u d i e s on t h e u t i l i z a t i o n to assess the nature, bacteria i swell established, detailed of intermediates of the cycle pseudomonads. l a c k s NAD o r NADP l i n k e d L - m a l ? c d e h y d r o g e n a s e . ATCC 9 0 2 7 Studies with acid. succinate-1,4- 12, The l a b e l l i n g patterns C and s u c c i n a t e - 2 , 3 - acid to o f c i t r a t e obtained other excluded possibility. Phosphofructokinase extract from -|Z| C have demonstrated t h e i n v o l v e m e n t o f t h e p a r t i c u l a t e m a l i c dehydrogenase and have any cell h a v e shown t h a t a n NAD a n d NADP i n d e p e n d e n t , p a r t i c u l a t e dehydrogenase c a t a l y s e s the o x i d a t i o n o f L-malic oxalacetic concerned Results of this i n v e s t i g a t i o n h a v e shown t h a t Pseudomonas a e r u g i n o s a L-malic designed i m p o r t a n c e a n d c o n t r o l o f t h e enzymes have n o t been performed w i t h fractions activity preparations c o u l d n o t be d e t e c t e d and thus a c c o u n t i n g Embden-Meyerhof pathway f o rthe non-functional i n t h i s organism. medium e i t h e r do n o t h a v e o r h a v e e x t r e m e l y metabolizing enzymes. The g l u c o s e c y c l e enzymes was n o t o b s e r v e d . i n the c e l l - f r e e C e l l s grown i n succinate low l e v e l s o f g l u c o s e e f f e c t on t r i c a r b o x y l i c Further, acid the a d d i t i o n o f a-keto- g l u t a r a t e a n d g l u t a m a t e t o t h e medium d i d n o t r e p r e s s these enzymes. These o b s e r v a t i o n s is of special The data suggest that t r i c a r b o x y l i c a c i d c y c l e i m p o r t a n c e f o r g r o w t h and have a l s o indicated that medium, p e n t o s e s y n t h e s i s upon compounds d e r i v e d I t has glucose shift from s u c c i n a t e even presence of 2-deoxyglucose, the medium. i t was intermediates. fructose or glucose u p t a k e was and permease not by GDP. c l e a r , however, i t i s maintained on growth in glucose and the the organism t o r e g u l a t e medium. obviously activity. the synthesis These o b s e r v a t i o n s the response t o the particular environment. Tricarboxylic acid cycle intermediates " f i n e c o n t r o l " over the d e h y d r o g e n a s e and mechanism s u c c i n a t e media, whereas in acetate been found t o e x e r t adenine l e v e l s o f m a l i c enzyme w e r e l e v e l s were low c a p a c i t y of was inhibited The i n the c o n t r o l o f t r i c a r b o x y l i c a c i d c y c l e High on a-CH^-glucoside, inhibited a c t i v a t e d by GTP dehydrogenase. the mannose. d e h y d r o g e n a s e was r e g u l a t i o n i s not of glutamic -citrate transketolase p e r m e a s e and A d d i t i o n o f g l u t a m a t e t o t h e medium r e p r e s s e d in succinate a c t i o n of The 1 0 0 - f o l d . e x c e s s of galactose, nucleotides while in a induced simultaneously s p e c i f i c since glucose Particulate malic important growth i n pseudomonads. from t r i c a r b o x y l i c a c i d c y c l e to glucose very this must o c c u r by enzymes were f o u n d t o be of during b e e n shown t h a t b o t h t h e g l u c o s e metabolizing i n the metabolism activity isocitrate lyase synthesis and demonstrated of enzymes glyoxylate activities the of i n s u c h a way have iso- that flow of isocitrate glyoxylate cycle eel 1. t h r o u g h the is precisely tricarboxylic regulated to acid suit c y c l e and the needs o f the the V TABLE OF CONTENTS Page INTRODUCTION LITERATURE 1 REVIEW • . I. G e n e r a l 3 . Pattern o f Carbohydrate Metabolism 3 i n Pseudomonads II. Distribution of Tricarboxylic Acid Enzymes a n d M e t a b o l i s m Intermediates of Dicarboxylic Acid i n Pseudomonads . . . I I I . T r i c a r b o x y l i c Acid Cycle A c t i v i t y of Glucose Oxidation Containing Cycle Cycle .• . . £ .• . 8 and Enzymes i n C e l l s Grown on M e d i a Glucose or a T r i c a r b o x y l i c Intermediate . Acid . IV. C o n t r o l o f T r i c a r b o x y l i c A c i d C y c l e and Glyoxylate Cycle A c t i v i t y V. M o l a r Growth Y i e l d Metabolic VI. Succinate i n Microorganisms. as a Tool Pathways . . . Utilizations . . . . . as D i s t i n c t f r o m o f the T r i c a r b o x y l i c Cycle . VI I . M e t a b o l i c .MATERIALS AND . . . . . 11 . . 16 i n the Study o f Dicarboxylic Acids . . .• . . Other Acid . . .• . P a t t e r n and E v o l u t i o n . . . . . . . . . . . 17 . 18 METHODS I . O r g a n i s m s and G r o w t h M e d i a . . . . . . 23 vi Table of Contents (Continued) Page II. Preparation Cell-Free III. of Extracts Determination IV. V. VI . VII. VIII. Resting of Substrates Isolation of Manometric Enzyme A s s a y s . Thin Layer Uptake of X. Analytical XI . Chemicals RESULTS AND I. IV. Growth . . Yield . • . . . . . 24 on of P. 25 a e r u g i hosa 27 . 27 . Reaction Products Chromatography, . . . . . . . Labelled 31 Autoradiography 31 Measurements. . 32 . 33 . . 34 Pseudomonas a e r u g i n o s a . 35 Substrates Methods . Oxidation Growth of Tricarboxylic Intermediates Yields of o x y l i c Acid Cycle III. . . . . . . DISCUSSION Related I I. . S u s p e n s i o n s and 25 Mutants Methods Analysis of . Molar Different and R a d i o a c t i v e IX. . Cell Studies with Lack of NAD o r Dehydrogenase P. by Acid Cycle a e r u g i nosa w i t h Some Tricarb- Intermediates. Mutants P. 41 . NADP D e p e n d e n t in and aeruginOsa 44 L-Malic 44 Table o f Contents (Continued) Page V. D e t e c t i o n and VI. Labelling S i t e o f Ma l a t e O x i d i z i n g A c t i v i t y . of C i t r a t e from Succinate-1,4- 14 . . 45 . 52 C 14 and Succinate-2,3 - C V I I . O x i d a t i o n o f S u c c i n a t e , F u m a r a t e and by a C e l l - F r e e V I I I . The Extract o f A. aerogenes. i n S u c c i n a t e or Glucose Media 1. G l u c o s e d e g r a d i n g enzymes 2. T r i c a r b o x y l i c acid of Malic G 1 u c o s e o r A c e t a t e Med i a r e l a t e d enzymes. activity Enzyme i n C e l l s . 59 XI. Control Harvested . . . . . . 61 . 68 .• . 76 .• . . 76 . . . . . 79 . . . . . c y c l e and 80 Utilization activity of the flow of i s o c i t r a t e tricarboxylic acid . . Cycle A c t i v i t y . 1. P a r t i c u l a t e m a l i c d e h y d r o g e n a s e Control . f r o m S u c c i n a t e Medium . of Tricarboxylic Acid . Grown i n S u c c i n a t e , I n d u c t i o n o f t h e Enzymes o f G l u c o s e in C e l l s . . . . . cycle activity b. G l u t a m i c d e h y d r o g e n a s e |iX. L e v e l . . . . c y c l e and a. T r i c a r b o x y l i c a c i d 2. . . . . . Enzymes o f C a r b o h y d r a t e M e t a b o l i s m - i n - P _ . a e r u g i n o s a Grown X. Malate . . . . 83 . . . 89 . . . 89 v i a the glyoxylate cycle i n P_. a e r u g i h o s a . • . . . .• . . a. I s o c i t r a t e d e h y d r o g e n a s e a c t i v i t y , . . . . . . . . . . 94 97 VI I I Table o f Contents (Continued) Page b. Isocitrate lyase a c t i v i t y c. A c o n i t a s e a c t i v i t y GENERAL DISCUSSION BIBLIOGRAPHY . . . . . .- . 101 .• . .• . .• . . . 105 108 . . . . . . . . . . . 117 ix L I S T OF TABLES Page Table Table I II. Table I I I . Table Table Table IV. V. VI. Accumulation of ketp acids during the o x i d a t i o n o f s u c c i n a t e , f u m a r a t e and ma l a t e i n t h e p r e s e n c e o f 1 mM s o d i u m arsenite 40 G r o w t h y i e l d o f P_. a e r u g i n o s a v a r i o u s carbon sources 43 from P a r t i c u l a t e m a l i c d e h y d r o g e n a s e and m a l i c enzyme i h P_. a e r u g i n o s a 48 E f f e c t o f EDTA and r i b o n u c l e a s e t r e a t m e n t on t h e d i s t r i b u t i o n o f p a r t i c u l a t e m a l i c d e h y d r o g e n a s e o f P_. a e r u g i n o s a 51 The t r i c a r b o x y l i c a c i d c y c l e a n d e n z y m e s o f P_. a e r u g ? n o s a M32 55 related Specific activity of radioactive citrate formed from succinate-1,4-^and succinate-2,3- ^C 57 A c t i v i t y o f some e n z y m e s o f c a r b o h y d r a t e m e t a b o l i s m i n P_. a e r u g i n o s a ' grown i n s u c c i n a t e o r g l u c o s e media 69 Glucose-6-phosphate forming a c t i v i t y from r i b o s e - 5 - p h o s p h a t e and r i b o s e p h o s p h a t e isomerase act i v i t y 72 S p e c i f i c a c t i v i t i e s of the t r i c a r b o x y l i c a c i d c y c l e and r e l a t e d e n z y m e s i n P_. a e r u g i n o s a grown w i t h d i f f e r e n t c a r b o n sources 78 E f f e c t o f c a r b o n s o u r c e s on t h e s p e c i f i c a c t i v i t i e s o f m a l i c enzyme a n d i s o c i t r a t e l y a s e i ri P_. a e r u g i n o s a 82 I n d u c t i o n o f some enzymes o f g l u c o s e o x i d a t i o n by g l u c o s e 84 1 Table Table Table Table Table VII. VIII. IX. X, XI X L i s t o f Tables (Continued) Page Table X I I . E f f e c t o f n u c l e o t i d e p h o s p h a t e s on t h e p a r t i c u l a t e m a l i c dehydrogenase i n Table X I I I . Table Table Table XIV. XV. XVI. 105,000 x £ p e l l e t 92 Partial p u r i f i c a t i o n of i s o c i t r a t e d e h y d r o g e n a s e and i s o c i t r a t e l y a s e from c e l l e x t r a c t s o f P. a e r u g i n o s a 96 I n h i b i t i o n o f i s o c i t r a t e dehydrogenase a c t i v i t y by v a r i o u s o r g a n i c a c i d s and r e l a t e d compounds 98 Inhibition by o r g a n i c o f i s o c i t r a t e lyase a c t i v i t y a c i d s and r e l a t e d compounds Aconitase inhibition i n c e l l - f r e e e x t r a c t o f P. a e r u g i riosa 102 106 xi L I S T OF FIGURES Page Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. 1. 2. 3. 4. 5. 6. 7. 8a. O x i d a t i o n o f s u c c i n a t e , f u m a r a t e and m a l a t e e e l 1 s u s p e n s i o n o f P. a e r u g i n o s a by O x i d a t i o n o f s u c c i n a t e , f u m a r a t e and m a l a t e c e l l - f r e e e x t r a c t o f P. a e r u g i n o s a by O x i d a t i o n o f a c e t a t e and p y r u v a t e by c e l l s c e l l - f r e e e x t r a c t o f P. a e r u g i n o s a 49 Autoradiogram o f the t h i n - l a y e r chromatograph from the r e a c t i o n mixture c o n t a i n i n g c e l l - f r e e e x t r a c t o f P. a e r u g i n o s a w i I d t y p e a n d r a d i o active succinate 53 Autoradiogram o f the t h i n - l a y e r chromatograph from the r e a c t i o n m i x t u r e c o n t a i n i n g c e l l - f r e e e x t r a c t o f P. a e r u g ? h o s a M32 and r a d i o a c t i v e succinate 54 14 Citrate f o r m a t i o n from succinate-1,4- C. 58' C 58 14 Fig. 9. O x i d a t i o n o f s u c c i n a t e , f u m a r a t e and m a l a t e c e l l - f r e e e x t r a c t o f A. a e r o g e n e s 11. 38 O x i d a t i o n o f L - m a l i c a c i d by c e l l - f r e e e x t r a c t and 100,000 x g_ p e l l e t o f P. a e r u g i n o s a C i t r a t e f o r m a t i o n from s u c c i n a t e - 2 , 3 Fig. and 39 8b. 10. 37 O x i d a t i o n o f s u c c i n a t e , f u m a r a t e and m a l a t e by r e s t i n g c e l l s u s p e n s i o n o f P_. a e r u g i n o s a i n t h e p r e s e n c e o f 1 mM s o d i u m a r s e n i t e Fig. Fig. 36 - by 60 G r o w t h o f s u c c i n a t e grown i n o c u l u m i n t h e m e d i a containing succinate, glucose or succinate plus glucose 63 G r o w t h o f g l u c o s e grown i n o c u l u m i n m e d i a containing glucose, succinate or glucose plus succinate 64 XI List o f Figures (Continued) Page Fig. 12. F i g . .13. Fig. Fig. Fig. Fig. 14. 15. 16. 17. Oxidation of succinate, glucose o r a mixture of s u c c i n a t e and g l u c o s e by e e l 1s h a r v e s t e d f r o m a s u c c i n a t e m i n i m a l medium 65 Oxidation of succinate, glucose o r a mixture o f s u c c i n a t e and g l u c o s e by c e l l s h a r v e s t e d f r o m a g l u c o s e medium 66 O x i d a t i o n o f g l u c o s e a n d s u c c i n a t e by t h e c e l l f r e e e x t r a c t s from t h e c e l l s grown i n g l u c o s e o r s u c c i n a t e media 67 G l u c o s e - 6 - p h o s p h a t e f o r m a t i o n from r i b o s e - 5 p h o s p h a t e by P_. a e r u g i n o s a g r o w n i n s u c c i n a t e or g l u c o s e media 73 Increase i n the level of 3 phosphoglyceraldehyde d e h y d r o g e n a s e and glucose-6-phosphate f o r m i n g a c t i v i t y f r o m r i b o s e - 5 - p h o s p h a t e , on s h i f t f r o m s u c c i n a t e t o g l u c o s e medium 74 U p t a k e o f r a d i o a c t i v i t y by g l u c o s e grown e e l I s o f P.. a e r u g i n o s a w i t h 1 0 " 5 M g l u c o s e - U - C and w i t h 10"i> M a - m e t h y l - g l u c o p y r a n o s i d e 86 I n c o r p o r a t i o n o f g l u c o s e - U - ^ C i n the presence o r a b s e n c e o f o t h e r s u g a r s by t h e w h o l e c e l l s o f P. a e r u g i n o s a h a r v e s t e d f r o m t h e g l u c o s e m i n i m a l medium 87 - 1 4 Fig. Fig. Fig. Fig. 18. 19. 20. 21. G l u c o s e - U - C i n c o r p o r a t i o n by t h e w h o l e c e l l s o f P. a e r u g i n o s a w i I d t y p e and i t s m u t a n t s t r a i n M5, h a r v e s t e d f r o m s u c c i n a t e m i n i m a l med i um 88 Increase i n the level o f p a r t i c u l a t e malic d e h y d r o g e n a s e a c t i v i t y on s h i f t t o g l u c o s e med i um 90 Lineweaver-Burk p l o t f o r p a r t i c u l a t e m a l i c dehydrogenase i n the absence o r presence o f 1 mM ATP 93 1 / | XI List Fig. Fig. Fig. Fig. 22. 23. 24. 25. of Figures E f f e c t of a mixture of c y c l e i n t e r m e d i a t e s on activity (Continued) tricarboxylic acid i s o c i t r a t e dehydrogenase Page 99 Lineweaver-Burk p l o t f o r i s o c i t r a t e d e h y d r o g e n a s e o f P_. a e r u g i n o s a 100 E f f e c t of a mixture of c y c l e i n t e r m e d i a t e s on activity 103 Lineweaver-Burk p l o t o f P. a e r u g i n o s a tricarboxylic acid i s o c i t r a t e lyase for isocitrate lyase 104 I I ACKNOWLEDGEMENTS I would J.J.R. like Campbell critcism during t o e x p r e s s my s i n c e r e g r a t i t u d e for his interest, the course o f t h i s supervision t o Dr. and c o n s t r u c t i v e s t u d y and w r i t i n g of the thesis. I would helpful also like t o thank f o r her s u g g e s t i o n s and c r i t i c i s m . My s i n c e r e a p p r e c i a t i o n for her forbearance during typing Dr. A.F. Gronlund a part i s extended Kamla t h e c o u r s e o f t h i s work and f o r of the thesis. Rosbergen f o r t h e f i n a l t o my w i f e typing I a l s o w i s h t o thank Mrs. of this manuscript. Rita INTRODUCTION Pseudomonas a e r u g i h o s a d o e s n o t p o s s e s s a Embden-Meyerhof pathway (Campbel1 and N o r r i s , Wang and G i l m o u r , 1960), and when o r g a n i s m s tricarboxylic acid cycle the o x i d a t i v e p o r t i o n o f T i g e r s t r o m and on pentose ( H a m i l t o n and C a m p b e l l , 1966b). t h a t when 6 - p h o s p h o g l u c o n a t e proposed Stern, a r e grown p a t h w a y a r e a b s e n t o r e x t r e m e l y low Dawes, I960; Von 1950; i n t e r m e d i a t e s , t h e enzymes o f t h e E n t n e r - D o u d o r o f f p a t h w a y and phosphate functional dehydrogenase I t has been activity i s a b s e n t , t h i s o r g a n i s m s y n t h e s i z e s p e n t o s e by t h e c o n d e n s a t i o n of and and C^ f r a g m e n t s (Wang, S t e r n and G i l m o u r , 1959; N e i d h a r d t , 1967a), w h i c h c o u l d be d e r i v e d acid cycle intermediates. t r i c a r b o x y l i c acid Thus, under from Lessie tricarboxylic these c o n d i t i o n s , c y c l e m e e t s t h e m a j o r m e t a b o l i c and biosynthetic demands i n P. a e r u g i h o s a . H o w e v e r , o n l y a weak s u c c i n i c activity i n t h i s organism has b e e n r e p o r t e d S t r a s d i n e , 1962; cell Von T i g e r s t r o m and s u s p e n s i o n s s u c c i n a t e was compound. dehydrogenase ( C a m p b e l l , Hogg and C a m p b e l l , 1966b), a l t h o u g h i n utilized at a rapid'rate t o o t h e r d i c a r b o x y l i c a c i d s s u g g e s t i n g a u n i q u e mode o f of this the comparable utilization S u c c i n a t e has a l s o been f o u n d t o r e p r e s s t h e i n d u c t i o n o f c e r t a i n d e g r a d a t i v e enzymes ( L e s s i e and N e i d h a r d t , 2 1967b; 1969). R o s e n f e l d and F e i g e l s o n , The u t i l i z a t i o n o f succinate a t t e m p t h a s b e e n made t o c o r r e l a t e utilization of cycle extensive studies activity W a r m s l e y , 1968) and I t was t h e o b j e c t acid ATCC 9 0 2 7 . special (Hanson e t a l , 1964; i s known a b o u t t h e r e g u l a t i o n i n pseudomonads. investigation t o s t u d y t h e mode o f reference to.succinate i n P. a e r u g i n o s a i n succinate and t h e E n t n e r - D o u d o r o f f pathway i n and g l u c o s e m e d i a h a s b e e n c o m p a r e d i n o r d e r t o a s s e s s t h e r e l a t i v e r o l e o f these pathways metabolism. cycle cycle The l e v e l o f t h e enzymes o f t h e t r i c a r b o x y l i c a c i d grown mechanism been a c i d members o f t h e t r i c a r b o x y l i c c y c l e , pentose phosphate c y c l e cells of tricarboxylic acid little of this of dicarboxylic cycle with W h i l e t h e r e have and i n B a c i 1 l u s s p e c i e s the a c t i v i t y o f t h i s cycle utilization o f t h e enzymes t o ( G r a y , Wimpenny a n d M o s s m a n , 1 9 6 6 b ; Wimpenny Hanson a n d Cox, 1 9 6 7 ) , v e r y of the a c t i v i t y intermediates. on r e g u l a t i o n in coliforms cycle i n d e t a i 1 i i i P. a e r u g i n o s a a n d n o : , members h a s n o t b e e n s t u d i e d the and o t h e r t r i c a r b o x y l i c a c i d Further, a n a t t e m p t h a s b e e n made t o e l u c i d a t e t h e c o n t r o l 1ing t r i c a r b o x y l i c a c i d activities i n succinate in this organism. cycle and g l y o x y J a t e LITERATURE REVIEW I . General Pattern of Although a f a c t which of our this Bergey's is genus, only has largely fluorescens of the pathways of come f r o m s t u d i e s h a s been e s t a b l i s h e d i n the that the utilization respectively via the p e n t o s e - p h o s p h a t e The Entner-Doudoroff degradative and G i l m o u r , to pathway 1959). capabilities of for particular this Pseudomonas a e r u g ? n o s a , putida of glucose P. metabolic studies (Stanier in has 1966). et a l , pathway plays an pseudomonads. glucose exclusively via this r e p t i 1 i v o r a m e t a b o l i z e 7 1 % and this (Stern, i n P. pathway and t h e Wang and G i l m o u r , fluorescens (Wang, remainder I960). major Stern t h e Pseudomonas s p e c i e s h a v e been l a c k a complete Embden-Meyerhof Pseudomonas f1uorescens has a l s o b e e n shown t o be t h e glucose Most o f P. In metabolism of S t r a i n A3.12 of via pathway pathway in d e t a i l . Entner-Doudoroff P_. a e r u g ? n o s a and P. 72% o f a d d e d g l u c o s e range o f m e t a b o l i c in exhaustive Pseudomonas s a c c h a r o p h ? 1 a d e g r a d e s scheme w h i l e Pseudomonas, carbohydrate a n d Pseudomonas p u t i d a . role 149 s p e c i e s o f a few h a v e b e e n s t u d i e d now b e e n c l a s s i f i e d a s a s t r a i n o f important 1ists the wide u s e d by W . A . Wood and c o w o r k e r s It M e t a b o l i s m i t i Pseudomonads (1957) manual indicative knowledge of genus Carbohydrate scheme. The first found indication 4 of t h i s was p r o v i d e d by a s t u d y o f t h e d i s t r i b u t i o n carbohydrates that and this i n P. a e r u g i h o s a , on t h e b a s i s o f w h i c h organism 1950). Norris, lacked Wood a n d S c h w e r d t (1954) reported and DeMoss ( 1 9 6 2 ) . a l (i960) i n Pseudomonas (Campbell f u r t h e r showed that i n P. f l u o r e s c e n s a n d t h u s t h e E m b d e n - M e y e r h o f p a t h w a y was n o t o p e r a t i o n a l . was i t was c o n c l u d e d t h e Embden-Meyerhof pathway p h o s p h o f r u c t o k i n a s e was a b s e n t et o f phosphorylated 1ihdrier? A similar observation (Zymomonas m b b i l i s ) by Raps Using radiorespirometric experiments, Stern showed t h e a b s e n c e o f t h e Embden-Meyerhof pathway i n t h r e e s p e c i e s o f pseudomonads. P r o d u c t i o n o f g l u c o n a t e and 2 - k e t o g l u e o n a t e from g 1 u c o s e has been o b s e r v e d i n pseudomonads by many w o r k e r s the significance of this and Campbell (1949) observation first (DeLey,.1960). became c l e a r when N o r r i s f o u n d t h a t P_. a e r u g i n o s a o x i d i z e d glucose to c a r b o n d i o x i d e and w a t e r v i a g l u c o n a t e a n d 2 - k e t o g l u c o n a t e . discovery together with the finding However, that t h i s organism This lacks the Embden-Meyerhof pathway e n a b l e d t h e a u t h o r s t o d e s c r i b e t h e o p e r a t i o n of a new p a t h w a y , t h e non-phosphory,l;ated p a t h w a y o f g l u c o s e degradation. T h i s has s i n c e been found and Wood, 1 9 5 6 ; Frampton i n P. f l u o r e s c e n s a n d Wood, 1 9 6 1 ) . G1uconokinase g l u c o n o k i n a s e h a v e been d e m o n s t r a t e d a n d t h e p r o d u c t s , and 2-keto-6-phosphogluconate converting have been 2-keto-6-phosphogluconate demonstrated. I t h a s been p r o p o s e d identified. (Narrod and 2-keto- 6-phosphogluconate A reductase t o 6-phosphogluconate further that has been 6-phosphogluconate 5 and 2-keto-6-phosphogluconate Entner-Doudoroff pathway. are metabolized to pyruvate v i a the 2-keto- E v i d e n c e has been p r e s e n t e d t h a t g l u c o n a t e f o l lows a s i m i l a r m e t a b o l i c p a t t e r n i n P. a e r u g i r i o s a . 1965). (Kay, The e a r l i e s t attempts t r i c a r b o x y l i c acid cycle s u s p e n s i o n s were used apparently t o demonstrate i n microorganisms the presence o f a met w i t h f a i l u r e . i n t h e enzyme s t u d i e s and t h e s e lacked the a b i l i t y to oxidize c i t r i c fa?led tricarboxylic and t o o x i d i z e a number o f t h e members o f t h e dried o f t h e same p r e p a r a t i o n o x i d i z e d a l l o f t h e i n t e r m e d i a t e s They c o n c l u d e d a e r u g i n o s a was i n i t i a l l y "Apparently the c e l l t h e s u b s t r a t e s a c r o s s t h e membrane". and w i t h r e s t i n g c e l l s was t h e time necessary f o r the e l a b o r a t i o n o f the system Kallio membrane o f i m p e r m e a b l e t o t h e compounds m e n t i o n e d , the period o f adaptation encountered f o r transferring Subsequently, B a r r e t t , Larson (1953) u s i n g P, f l u o r e s c e n s showed t h a t d u r i n g p r o l o n g e d lags before the o x i d a t i o n o f c e r t a i n protein essential cell Campbell acid cycle without a prior period of induction, without a lag. and suspensions (1951) o b s e r v e d t h a t a l t h o u g h a e e l 1 s u s p e n s i o n o f P_. a e r u g i hbsa cells Cell a c i d o r some o f t h e dicarboxylic acids without a period of induction. Stokes complete t r i c a r b o x y l i c a c i d c y c l e members, t o t h e t r a n s p o r t o f t h e s e compounds a c r o s s t h e membrane was b e i n g s y n t h e s i z e d . F o r m a t i o n o f g l y o x y l a t e and s u c c i n a t e from c i t r a t e o r c i s - a c o n i t a t e was d e s c r i b e d by C a m p b e l l , Smith and E a g l e s (1953) i n 6 P_. a e r u g i n o s a . Discovery of this reaction together with s y n t h a s e by Wong a n d A j 1 ( 1 9 5 ° ) l e d t o t h e f o r m u l a t i o n steps o f glyoxylate cycle f o r growth on a c e t a t e I t has been f o u n d level cycle directly "glycerate glyoxylate, give i n pseudomonads a n d v a r i o u s cannot enter The pathway" derived ( K o r n b e r g , 1961) the from t h e o x i d a t i o n Dicarboxylic Acid o f g l y c o l l a t e , condense t o in bacteria Enzymes and M e t a b o l i s m i n Pseudomonads established. cycle i n aerobic In a n e x c e l l e n t Using d i f f e r e n t experimental presented evidence against as review o f d i f f e r e n t steps o f t r i c a r b o x y l i c acid c y c l e i n mammalian t i s s u e a n d m i c r o o r g a n i s m s h a s b e e n d e s c r i b e d 1961). semi- t h e Embden-Meyerhof scheme. Ihtermedi ates i swell Tartronic i s phosphorylated to importance o f the t r i c a r b o x y l i c a c i d formulation oxidation i n w h i c h two m o l e c u l e s o f i s reduced t o g l y c e r i c a c i d which metabolism organisms. and i s m e t a b o l i z e d v i a a n o t h e r scheme named t h e D i s t r i b u t i o n o f T r i c a r b o x y l i c Ac?d Cycle Of i sessential the t r i c a r b o x y l i c acid or glyoxylate p h o s p h o g l y c e r i c a c i d and f u r t h e r enters I I. other i s at a higher t a r t r o n i c s e m i a l d e h y d e and c a r b o n d i o x i d e . aldehyde o f malate of different ( K o r n b e r g a n d K r e b s , 1957) w h i c h that g l y c o l l a t e , which than a c e t a t e , that Kogut and P o d o s k i approaches, Krampitz the operation p r o p o s e d e a r l i e r by Thunberg (1953) (1920) studied (Krampitz, also of dicarboxylic acid a n d by A j 1 ( 1 9 5 0 ; the oxidation of cycle 1951). succinate 7 by w h o l e c e l l s On t h e g r o w t h medium r i c h i n s u c c i n a t e a n d l o w i n ammonia, a c c u m u l a t i o n o f a - k e t o g l u t a r a t e was o b s e r v e d . possess was the tricarboxylic proposed acid acid C e l l - f r e e e x t r a c t s w e r e shown t o a c i d c y c l e enzymes. and Smith c y c l e enzymes (1956) showed t h e p r e s e n c e o f t r i c a r b o x y l i c C a m p b e l l , Hogg.and d i s t r i b u t i o n o f many i m p o r t a n t enzymes in this Strasdine organism (1962) in different P_. a e r u g i n o s a a n d f o u n d t h a t s u c c i n i c d e h y d r o g e n a s e the cell membrane w h e r e a s f u m a r a s e , isocitrate and i s o c i t r a t a s e were i n t h e s o l u b l e c y t o p l a s m . and Gunsalus P. (1953) reported that they d i d not attempt aba that and (Campbell, studied the was a s s o c i a t e d dehydrogenase Stanier, Gunsalus activity in fraction. However, t o e l u c i d a t e t h e n a t u r e and l o c a t i o n o f t h i s While s t u d y i n g o x i d a t i o n o f L-malate i r i Pseudomonas B? a n d Pseudomonas o v a 1 i s C h e s t e r , F r a n c i s e_t a j _ (1963) the former organism i t sc e l l - f r e e extract possessed uti1ized incompletely while extracts this substrate earlier fractions of the malate o x i d i z i n g f l u o r e s c e n s was p r e s e n t i n t h e p a r t i c u l a t e enzyme. possibilities. i n P_. a e r u g i n o s a , t h u s c o n f i r m i n g t h e i r Stokes, 1951). with study i t v i a the t r i c a r b o x y l i c not e l i m i n a t e other observation o f the presence o f t h e c y c l e and From t h i s t h a t s u c c i n a t e was b e i n g o x i d i z e d c y c l e , although they could Campbell o f P_. f l u o r e s c e n s . and c e l l - f r e e e x t r a c t s o f a s t r a i n soluble malate L-malic dehydrogenase v e r y s l o w l y and from t h e l a t t e r organism r a p i d l y and c o m p l e t e l y . found oxidized This investigation t h a t P. o v a l i s C h e s t e r p o s s e s s e s an NAD, NADP independent showed 8 p a r t i c u l a t e L-malic III. dehydrogenase. T r i c a r b o x y l i c Acid Oxi d a t i o n C y c l e A c t i v i t y and i h C e l 1 s Grown oh a T r i c a r b o x y l i c Acid The to inhibit the r e c o g n i z e d by of the synthesis Epp and of Gale as the that factor the glucose effect as the d e a m i n a s e s by lowering of is exerted by the pH 1961). found t h a t when g r o w n on g l u c o s e , a c e t a t e and tricarboxylic acid nutrient b r o t h S. intermediates of was t r i c a r b o x y l i c acid correlated extracts Strasters of with the and a low organism. Winkler glucose cycle the inhibition medium been cycle suggested formed from enzymes Lascelles aureus, has (1962) oxidized tricarboxylic acid cycle. organism f a i l e d i n t e r m e d i a t e s and activity first repression C o l l i n s and H o w e v e r , when g r o w n i n a g l u c o s e medium, t h e oxidize or i i i E.' c o l i ; catabolites (Magasanik, in various bacteria. of I t has hence i t i s s i m i l a r t o c a t a b o l i t e been r e c o g n i z e d the gl ucose the for this effect, g l u c o s e e f f e c t on a b i 1 i t y of (1942) when t h e y o b s e r v e d g l u c o s e and The G1ucose c e r t a i n d e g r a d a t i v e enzymes was the responsible Glucose Intermediate is defined f o r m a t i o n o f amino a c i d These workers e l i m i n a t e d Med i a C o n t a ? h i ng Cycle glucose e f f e c t which Enzymes o f o f enzymes o f this to inability this cycle in S i m i l a r o b s e r v a t i o n s were r e p o r t e d (1963) i n t h e same o r g a n i s m . Glucose by has 9 a l s o been o b s e r v e d c y c l e enzymes Srinivasan t o repress i n Baci1lus the synthesis subtilis of t r i c a r b o x y l i c acid and B a c i 1 l u s cereus (Hanson, a n d H a l v o r s o n , 1 9 6 3 a ; 1 9 6 3 b ; Hanson e t a l , H a n s o n and C o x , 1 9 6 7 ) . An t h e s e enzymes o c c u r r e d increase 1964; i n the s p e c i f i c a c t i v i t y after depletion of o f g l u c o s e f r o m t h e medium. In an e x h a u s t i v e s t u d y on t h e r e g u l a t i o n o f m e t a b o l i s m o f Escherichia glucose this col i , repressed repression G r a y , Wimpenny and Mossman t r i c a r b o x y l i c a c i d c y c l e enzymes. was partially used showed However, glucose i n which s i t u a t i o n the f o r synthesis. The g l u c o s e e f f e c t on enzymes o f t r i c a r b o x y l i c a c i d has n o t been r e p o r t e d species, this i n pseudomonads w i t h i . e . Pseudomonas species hitriegens i s so a t y p i c a l that the exception i t p o s s e s s e s an a c t i v e d o e s n o t show D o u d o r o f f p a t h w a y a c t i v i t y when g r o w n on g l u c o s e (Eagon, activity cycle o f one (Cho a n d E a g o n , 1 9 6 7 ) . M e y e r h o f p a t h w a y , c a n grow a n a e r o b i c a l l y , Wang, 1962) that r e d u c e d when t h e c e l l s w e r e grown i n a s y n t h e t i c medium c o n t a i n i n g c y c l e must be (1966) But EmbdenEntner- (Eagon and a n d d o e s n o t p o s s e s s NADPH o x i d a s e o r t r a n s h y d r o g e n a s e 1963). Von T i g e r s t r o m a n d C a m p b e l l of t r i c a r b o x y l i c acid grown on g l u c o s e , c y c l e enzymes d-ketoglutarate l e v e l s o f t h e enzymes were not s t r i k i n g l y and a c e t a t e i n the c e l l s different. harvested (T966b) c o m p a r e d t h e iriP. and found that the from the three I t h a s been r e p o r t e d t r i c a r b o x y l i c a c i d c y c l e enzymes may aerug?nosa that be c o n s t i t u t i v e i n media pseudomonads (Campbell but permeases f o r the c y c l e intermediates are inducible a n d S t o k e s , 1951 ; B a r r e t t et_ a j _ , 1953). In c o n t r a s t i t a p p e a r s i n pseudomonads t h a t t h e enzymes o f g l u c o s e c a t a b o l i s m are inducible. Hamilton t h a t c u l t u r e s o f P. a e r u g i r i o s a : w h 1 c h medium p o s s e s s a n d Dawes (1960) h a v e b e e n grown on a g l u c o s e g l u c o s e and g l u c o n i c d e h y d r o g e n a s e s , gluconokinase, 2-ketogluconokinase, found hexokinase, glucose-6-phosphate 6- and p h o s p h o g 1 u c o n a t e d e h y d r o g e n a s e s a n d t h e enzymes o f t h e E n t n e r Doudorof f pathway. However, organisms members o f t h e t r i c a r b o x y l i c acid grown on m e d i a c o n t a i n i n g c y c l e showed e x t r e m e l y low l e v e l s o f t h e s e enzymes and t h e y w e r e i n d u c e d on i n c u b a t i o n o f s u c h c e l l s with glucose. were induced shown that a l l of these on t r a n s f e r o f c i t r a t e grown c e l l s containing glucose Campbell L a t e r i t was (Ng a n d Dawes, 1967). enzymes t o a medium Von T i g e r s t r o m a n d (1966b) a l s o f o u n d t h a t when grown on a - k e t o g l u t a r a t e and a c e t a t e P. a e r u g ? r i o s a was e i t h e r d e v o i d o f o r p o s s e s s e d low l e v e l s o f t h e enzymes required f o r glucose oxidation. grown c e l l s w e r e shown t o b e h a v e s i m i l a r l y 1967a). resembles G r o w t h on t r i c a r b o x y l i c a c i d cycle ( L e s s i e and Succinate Neidhardt, intermediates probably t h a t on a c o m p l e x medium s i n c e when grown P. f 1 u o r e s c e n s very i n such a medium h a s been shown t o l a c k t h e enzymes o f t h e E n t n e r - Doudorof f pathway ( E i s e n b e r g and D o b r o g o s z , 1967)• 11 IV. C o n t r o l o f T r i c a r b o x y l i c A c i d C y c l e arid G l y o x y l a t e Activity The in Microorganisms topic of regulation of tricarboxylic acid glyoxylate cycle activity has i s a recent s u b j e c t . c y c l e and Most o f t h e s t u d y been w i t h c o l i f o r m b a c t e r i a and B a c i 1 l u s s p e c i e s . e f f e c t o f a e r o b i o s i s and a n a e r o b i o s i s a p a r t "fine" control has been s t u d i e d . made by A m a r s i n g h a m a n d D a v i s glutarate completely Interesting observations (1965) d e h y d r o g e n a s e ?h E. c o l i . repressed a substantial The from " c o a r s e " and were on t h e r e g u l a t i o n o f a - k e t o T h i s enzyme was f o u n d t o be i n a n a e r o b i c a l l y grown c e l l s w h i l e i n a e r o b i c c u l t u r e s grown on g l u c o s e o r l a c t a t e until Cycle accumulation i t was n o t f o r m e d of metabolites (presumably a-keto- g l u t a r a t e o r a c e t a t e ) had o c c u r r e d . They p r o p o s e d t h a t dehydrogenase serves l i n k between t h e r e d u c t i v e branch l e a d i n g t o s u c c i n a t e and t h e b i o s y n t h e t i c branch a-ketoglutarate. not as a c o n n e c t i n g Under a n a e r o b i c r e q u i r e d and i s a b s e n t . conditions this leading t o connection i s Under a e r o b i c c o n d i t i o n s t h e second h a l f o f the c y c l e can serve a c a t a b o l i c dehydrogenase a-ketoglutarate r o l e and a - k e t o g l u t a r a t e i s synthesized to completely o x i d i z e s u b s t r a t e s by recycling. Gray et_a_l_ (1966b) acid c y c l e enzymes have r e p o r t e d t h a t t h e l e v e l i s g r e a t l y reduced of tricarboxyl ic i n a n a e r o b i c a l l y g r o w n E. c o 1 i . The coarse a way and control o f t h e enzymes o f t h i s c y c l e i s e x e r t e d t h a t the a c t i v i t y a n a b o l i c need. is modified When g l u t a m a t e a c c o r d i n g t o the o f g l u c o s e , but and can The authors ( D a v i s , 1961) pathway g l u t a r a t e and c a n n o t be regarded as glutamate; constitutive t h e a and The s o t h a t t h e c y c l e may On c g r o u p s o f enzymes a r e needed f o r g l u t a m a t e presence repressed of glutamate, repression of aconitase Cox, glutamic operate s y n t h e t i c media w i t h induced while as glucose a-ketoglutarate since a-ketoglutarate is now biosynthesis. r i s e to glutamate ( H a n s o n and the g l u c o s e , a l 1 enzymes e x c e p t pathway. dehydrogenase remains under c. t h e 4 - c a r b o n d i c a r b o x y l i c a c i d s . and dehydrogenase are derepressed an e n e r g y g e n e r a t i n g this the 5-carbon d i c a r b o x y l i c a c i d s , a-keto- complex media w i t h o u t giving t h a t t h e enzymes o f i . e . t h e enzymes c a t a l y z i n g : a . t r i c a r b o x y l i c a c i d s ; b. presence derepressed be d i v i d e d i n t o a t l e a s t t h r e e g r o u p s w h i c h a r e independent c o n t r o l , On suggest the i n the t h e o t h e r enzymes o f t h e c y c l e a r e n o t proportionately. amphibolic i n c r e a s e d even such catabolic must be s y n t h e s i z e d , enzymes l e a d i n g t o i t s f o r m a t i o n a r e in a-ketoglutarate i n glucose minimal i n B. 1967), but s i i b t i 1 i s and o r compounds medium c a u s e d B. complete 1 ichen?formis fumarase, s u c c i n i c dehydrogenase, m a l i c d e h y d r o g e n a s e and i s o c i t r i c dehydrogenase were not a f f e c t e d . These workers suggested that t o r e g u l a t e c a t a b o l i c and individual control mechanisms a n a b o l i c s e c t i o n s of the operate tricarboxylic acid is cycle activity in the b a c i l l i , d i f f e r e n t • from-Ej-'col i s i n c e both and t h i s c o n t r o l mechanism i n the l a t t e r organism a c t i v i t y o f t h e a n a b o l i c and t h e c a t a b o l i c s i d e o f t h e c y c l e was repressed u n d e r t h e same c o n d i t i o n s o f g r o w t h . Recently, observations S h i i o and Ozaki on c o n c e r t e d dehydrogenase a c t i v i t y observed w i t h (1968) inhibition o f t h i s enzyme w h i l e not result that t h e enzyme when a l r e a d y t h a n when i t i s f r e e . oxalacetate caused s t r o n g inhibition. stronger with (oxalmalate) inhibition i n e q u i m o l a r amounts K i n e t i c a n a l y s i s showed bound t o one o f t h e s e The c o n d e n s a t i o n and p i g h e a r t . a d d i t i o n o f small their addition singly in significant isocitrate w h i c h was a l s o B. s u b t ? l i s the simultaneous combines about 60,000 times and flavum t h i s enzyme f r o m E. c o l i , amount o f g l y o x y l a t e a n d o x a l a c e t a t e interesting o f NADP-specific i n Brevibacterium These w o r k e r s found t h a t did have r e p o r t e d the other product inhibitors inhibitor of glyoxylate was n o t f o u n d t o be a s t r o n g o f t h e i s o c i t r a t e dehydrogenase from t h e above s o u r c e s , i t was a l s o shown t h a t t h e c o n d e n s a t i o n physiological product by R u f f b e t _ a l _ (1967) observation tissue. was more i n h i b i t o r y a s was p r o p o s e d On t h e b a s i s o f f u r t h e r to.isocitrate d e h y d r o g e n a s e o f B. f l a v u m , under i n the t h a t t h e combined e f f e c t o f t r i c a r b o x y l i c a c i d intermediates isocitrate i n p i g heart although i s n o t formed c o n d i t i o n s and i s t h e r e f o r e n o t i m p o r t a n t regulation of tricarboxylic acid cycle activity inhibitor cycle lyase than t o t h e i t was p r o p o s e d that a high the concentration o f t r i c a r b o x y l i c a c i d c y c l e members a c t i v i t y o f t h e g l y o x y l a t e c y c l e by r e p r e s s i n g (Ozaki a n d S h i i o , 7968). On t h e o t h e r produced as a r e s u l t o f i s o c i t r a t e i s o c i t r a t e dehydrogenase i n concert acetate all i s p r e s u m e d t o be p r e s e n t with lyase glyoxylate inhibits oxalacetate. i n the c e l l Oxal- a t low l e v e l s a t times. I t h a s b e e n shown t h a t when E. c o l i in glucose, pyruvate o r metabolizable tricarboxylic repressed E. isocitrate hand, excess lyase a c t i v i t y inhibits cOli acid cycle, isocitrate ( K o r n b e r g , 1965; 1966). induce the c y c l e been i d e n t i f i e d isocitrate lyase synthesis i s the glyoxylate cycle i s not by.removing t h e r e p r e s s e r which has as p h o s p h o e n o l p y r u v a t e . The f i n e c o n t r o l o f t o be e x e r t e d again by p h o s p h o - i h E_. c o l _ i _ a n d t h i s m e c h a n i s m seems t o be d i f f e r e n t found unaffected indirectly of the d i r e c t l y , b u t t h a t t h e s e compounds l y a s e has been p r o p o s e d enolpyruvate than that o r acetyl-CoA intermediates I t has been p r o p o s e d t h a t i n and Achromobacter s p e c i e s , i n d u c e d by a c e t a t e o r pseudomonads a r e grown, i n B. f l a v u m , j n which by p h o s p h o e n o l p y r u v a t e isocitrate (Ozaki lyase a c t i v i t y i s a n d S h i i o , 1968). Pseudomonads a r e known t o u t i 1 i z e a n d grow on a g r e a t oforganic developed control activity variety compounds a n d , t h e r e f o r e , t h e y must p o s s e s s a w e l l r e g u l a t o r y mechanism. However, r e f e r e n c e s on t h e o f t h e • t r i c a r b o x y l i c -acid c y c l e and g l y o x y l a t e i n pseudomonads a r e n o t a v a i l a b l e . cycle Smith and Gunsalus (1957) studied t h e r e a c t i o n mechanism o f P. a e r u g i n o s a and by i t was i t s p r o d u c t g l y o x y l a t e and succinate and found t h a t i s a "mixed" Howes, 1963) Shiio, 1968). nitrate on type as was There succinate. h a v e b e e n a few acid grown u n d e r . t h e s e c o n d i t i o n s enzyme (McFadden flavum (Ozaki the e f f e c t cycle activity i f nitrate c y c l e was B. iridigofera, r e p o r t s on deri?trificans, grow a n a e r o b i c a l l y The•tricarboxylic acid In P. inhibitor of this the t r i c a r b o x y l i c lyase i n non-competitively inhibited a l s o observed w i t h C e r t a i n s p e c i e s s u c h as P. stutzeri isocitrate P. a e r u g ? n o s a shown t o f u n c t i o n S i m i l a r l y , Wimpenny a n d Warms l e y (1968) that and P. i n t h e medium. i n P. stutzeri 1966). Gilmour, found of o f pseudomonads. is included ( S p a n g I e r and and fumarase and a e o n i t a s e w e r e u n a f f e c t e d i n P_. a e r u g i n o s a , P: s t u t z e r i • and aerobes s u c h as B. s u b t i 1 i s and a l l y with A. nitrate. aerogenes, undetectable of levels and under high l e v e l s of n i t r i t e suggest activity different B. m e g a t h e r i u m when grown a n a e r o b i c - However, i n f a c u l t a t i v e organisms E. c o l i B. m a r c e r a n s and i n t h e medium. facultative such t h e s e enzymes f e l l t h e s e c o n d i t i o n s due types of c o n t r o l i n aerobes other as to to accumulation These o b s e r v a t i o n s thus of t r i c a r b o x y l i c acid anaerobes. cycle -16 V. M o l a r G r o w t h Y i e l d a s a T o o l M o l a r growth y i e l d i n t h e Study o f M e t a b o l i c Pathways (MGY) i s d e f i n e d as t h e d r y w e i g h t o f c e l l s i n gms o b t a i n e d p e r m o l e o f c a r b o n s o u r c e u s e d d u r i n g g r o w t h . aerobic bacteria, relatively i n which e a s y , were f i r s t assessment tested o f energy Gunsalus productioni s f o rdeviations E m b d e n - M e y e r h o f p a t h w a y u s i n g MGY d a t a . An- from t h e DeMoss, B a r d a n d . (1951)'• c o m p a r e d t h e MGY o f S t r e p t o c o c c u s f a e c a l i s and LeuconOstoc m e s e n t e r o i d e s grown on g l u c o s e a n d c o n c l u d e d L. m e s e n t e r o i d e s less energy f e r m e n t e d g l u c o s e by a pathway w h i c h that yielded t h a n t h e E m b d e n - M e y e r h o f p a t h w a y u s e d by S_. f a e c a l i s . F u r t h e r work l e d t o t h e d i s c o v e r y o f t h e mechanism o f h e t e r o l a c t i c fermentation ( G u n s a l u s and G i b b s , 1 9 5 2 ) . i n L, m e s e n t e r o i d e s and E l s d e n (1960) per m o l e o f ATP i s s i m i l a r showed t h a t v ^ T p , the y i e l d great importance in correlating c a r b o n s o u r c e i n t h e medium w i t h Under a e r o b i c c o n d i t i o n s the Moreover, c o n d i t i o n s , energy a large part h a v e no s i g n i f i c a n c e . limiting (20 t o 5 0 % ) o f t h e material (Hernandez and balance i t i s w i d e l y accepted t h a t under i s never is of t h e m e t a b o l i c route used. V967) w h i c h makes t h e c a l c u l a t i o n o f e n e r g y impossible. using the This observation o b t a i n e d on a energy source i s converted t o c e l l u l a r Johnson, i n gms o f d r y w e i g h t f o r d i f f e r e n t microorganisms same p a t h w a y o f c a r b o h y d r a t e m e t a b o l i s m . Bauchop limiting aerobic a n d t h e r e f o r e , Y^.p v a l u e s H e r n a n d e z a n d J o h n s o n Q967) found that under a e r o b i c the c o n d i t i o n s ATP i s n o t t h e f a c t o r l i m i t i n g Y^-p v a l u e i s not a constant. It has been o b s e r v e d yield i s proportional substrates t h a t under a e r o b i c and E a g l e s , H o w e v e r , i t c a n be a r g u e d t h a t t w o s u b s t r a t e s metabolized could give d i f f e r e n t c e l l M a y b e r r y , P r o c h a z k a and Payne (1967) by t h e s e 1952). y i e l d s i f they a r e i n v o l v e s an i ; e . CC^ f i x a t i o n . Recently, made an i n t e r e s t i n g s t u d y growth y i e l d s o f b a c t e r i a under a e r o b i c values t h e growth of equivalent by d i f f e r e n t p a t h w a y s , one o f w h i c h advantageous step o f g a i n i n g carbon, the conditions t o t h e amount o f c a r b o n s u p p l i e d (Monod, 1942; C a m p b e l 1 , L i n n e s carbon content g r o w t h and c o n d i t i o n s and found However, t h e y found t h a t t h e growth y i e l d of a v a i l a b l e electrons . in the substrate and was a p p r o x i m a t e l y avai1able VI. 3.14 gm o f c e l l s utilized a s Di s t ? n e t o f t h e T r i c a r b o x y l i c Ac?d In s e v e r a l per equivalent was constant, per equivalent o f f r o m O t h e r Di c a r b o x y l i c Cycle s t u d i e s , i t was f o u n d t h a t in relation t r i c a r b o x y l i c a c i d c y c l e enzymes, a low l e v e l d e h y d r o g e n a s e was p r e s e n t Von wide electrons. Succinate.Ut?1ization Acids that o f y i e l d s p e r m o l e o f s u b s t r a t e ; p e r gm a t o m o f s u b s t r a t e c a r b o n ; a n d p e r m o l e o f o x y g e n consumed v a r i e d o v e r a v e r y range. on Tigerstrom i n P. a e r u g i n o s a t o other of succinic (Campbell e t a l , 1962; and C a m p b e l l , 1 9 6 6 b ) , b u t i n s p i t e o f t h i s t h e organism oxidized cycle succinate at rates intermediates. difficult T h u s , on i n h i b i t o r of h istidase Hunter, 1968). urocanase which indirectly It would histidase is a r e two m a j o r i s ATP and the c o n c l u d e d t o be a ( L e s s i e and histidase. inhibiting be c a l l e d metabolites to not the i n reduced However, o t h e r also by t h e same m e c h a n i s m as e f f e c t was succinate urocanase. suppress succinate. inhibition by studied. forms o f a v a i l a b l e b i o c h e m i c a l e n e r g y . i n the d i r e c t i o n more e n e r g y on c o m b u s t i o n . the m o l e c u l a r hydrogen form in primitive life ( o r NADH) w h i c h of reduction, forming This reducing the " m e t a b o l i c hydrogen" which replaces inhibition Thus, such as c i t r a t e (Hug, E v o l u t 1 on the reactions compounds w h i c h y i e l d form o f l i f e due t h e o t h e r t h e r e d u c i n g p o w e r o f NADPH to drive p o w e r may by i n P. a e r u g i h o s a have been r e l e v a n t t o have o b s e r v e d M e t a b o l i c P a t t e r n and used by support r a p i d growth s y n t h e s i s presumably There One ih vivo inhibited f u m a r a t e and m a l a t e , b u t t h e i r VII. previously Urocanate accumulated in turn inhibited compounds w h i c h histidase solely 1967b) has b e e n f o u n d t o i nh ?b? t u r o c a n a s e i n P. p u t i d a Neidhardt, of utilized i t was dehydrogenase. R e c e n t l y , s u c c i n a t e w h i c h was R o t h and to those o f other the b a s i s o f these s t u d i e s , t o c o n c l u d e t h a t s u c c i n a t e was action of succinic feedback comparable i n t h e modern that maintained the forms (Horecker, 1965). Horecker (1965) h a s d e s c r i b e d t h e r e l a t i o n s h i p o f NADH a n d NADPH w i t h o x y g e n a n d c e l l u l a r b i o s y n t h e s i s as f o l l o w s : Substrate NADH Substrate NADPH fast r I slow No~P Reduction reactions T h e r e w o u l d be n o need f o r t w o c o e n z y m e s i n t h e absence o f m o l e c u l a r o x y g e n , s i n c e a s i n g l e coenzyme c o u l d a c t b o t h for f e r m e n t a t i o n and as a source what In i s seen these i n thepresent species developed first o f metabolic hydrogen. day s t r i c t anaerobes such fermentation the major m e t a b o l i c as t h e coenzyme This i s as f o r t h e p r o d u c t i o n o f energy activity. This also implies that Clostridia. is still anaerobes i nevolutionary history since i ti sbeiieved that t h e a t m o s p h e r e o f t h e p r i m i t i v e e a r t h was h i g h l y r e d u c i n g c o n t a i n i n g h y d r o g e n compounds s u c h itself. in a s m e t h a n e , ammonia a n d m o l e c u l a r L a t e r , i n t h e presence o f oxygen, p r e e x i s t i n g t h e hydrosphere were c o n v e r t e d NADH was now u t i l i z e d phosphorylation, i t was n o t a v a i l a b l e a s e c o n d c o e n z y m e , NADP was e v o l v e d appeared. NADPH p r o v i d e d a source subunits t o more o x i d i z e d f o r m s . f o r the production o f energy hydrogen Since in oxidative f o r r e d u c t i v e r e a c t i o n s and f r o m NAD when respiration o f m e t a b o l i c h y d r o g e n w h i c h was not i n equilibrium with The oxygen. h e x o s e m o n o p h o s p h a t e p a t h w a y h a s b e e n shown t o be r a t e - limited p r i m a r i l y by t h e r a t e o f NADP s u p p l y tissues such as l i v e r (McLean, I 9 6 0 ) . rate limiting ( C a h i 1 1 et_ a l _ , 1958) a n d i n mammary Eagon ( 1 9 6 2 ) showed t h a t i n the operation i i i P. l i i t r i e g e n s . T h i s but i n a v a r i e t y o f animal t h e s u p p l y o f NADP was o f t h e hexose monophosphate pathway o r g a n i s m p o s s e s s e s enzymes o f t h i s l a c k s NADH o x i d a s e a n d t r a n s h y d r o g e n a s e . A strong b e t w e e n t h e s i m u l t a n e o u s p r e s e n c e o f NADPH o x i d a s e p l u s hydrogenase w i t h tissue the u t i l i z a t i o n pathway correlation trans- o f t h e hexose monophosphate p a t h w a y and t h e E n t n e r - D o u d o r o f f p a t h w a y when grown on g l u c o s e h a s b e e n shown i n d i f f e r e n t microorganisms ( E a g o n , 1963) - Although complete t r i c a r b o x y l i c a c i d c y c l e a c t i v i t y i s associated with aerobic life, two p o r t i o n s o f the cycle serving biosynthetic purposes o p e r a t e under a n a e r o b i c c o n d i t i o n s . now i n c r e a s i n g l y common t o f i n d viz. becoming the c i t r a t e activity leading synthase, aconitase t o biosynthesis It has been r e p o r t e d the anaerobic and i s o c i t r a t e of a-ketoglutarate It i s route dehydrogenase i n anaerobes. i n a v a r i e t y o f anaerobes such as C l o s t r i d i u m k l u y v e r i , M e t h a n o b a c i 1 l u s onie 1 i a i i s k ? i , P e p t o s t r e p t o c o c c u s e l s d e n i 1 and Ch 1 o r o p s e u d o m o h a s e t h y l i c u m and B a r k e r , 1967; S o m e r v i l i e , In c y t o c h r o m e c o n t a i n i n g 'succinate (Stern and Bambers, 1966; 1 9 6 8 ; C a l l e l y and F u l l e r , a n a e r o b e s s u c h as h a s been shown t o be f o r m e d Gottschalk 1967). Bacteroides'ruminicola, from pyruvate o r i t s derivative cycle (White, The some m e t a b o l i c reductive steps changes originally in fatty to facultative o r aerobic i n microorganisms. evolved acid i n anaerobes f o r c a t a l y s i n g synthesis, but the f l a v o p r o t e i n t o o x y g e n must h a v e b e e n t h e f i r s t to a e r o b i o s i s ( D o l i n , 1961). life The coenzyme system t o c a t a l y s e t r a n s f e r o f e l e c t r o n s from directly acid and C a l d w e l l , 1962). from a n a e r o b i c was p r o b a b l y oxidase the r e d u c t i v e branch o f t h e t r i c a r b o x y l i c Bryant shift involved FAD through substrates step towards I t has been o b s e r v e d adaptation that l a c t i c acid b a c t e r i a w h i c h h a v e no c y t o c h r o m e s , c a r r y o u t c e r t a i n o x i d a t i o n reactions that in this fashion. 1 ti S. f a e c i um a n L (+) induced on a e r o b i c g r o w t h . coenzyme a t t a c h e d Recently, specific London (1968) h a s shown lactate oxidizing enzyme i s T h i s o x i d a s e w h i c h h a s FAD a s t h e t o t h e apoenzyme e n a b l e s under a e r o b i c c o n d i t i o n s on l a c t a t e . t h e o r g a n i s m t o grow I t was s u g g e s t e d that this enzyme c o n f e r s on t h e o r g a n i s m t h e a b i 1 i t y t o . s u r v i v e ' i n a carbohydrate depleted a e r o b i c environment c o n t a i n i n g L(+) lactate. F a c u l t a t i v e organisms are capable o f developing and a e r o b i c m e t a b o l i s m d e p e n d i n g upon t h e c o n d i t i o n s The extensive study b y G r a y e t a l _ ( 1 9 6 6 a ; 1966b) and Warms l e y ( 1 9 6 8 ) provide The m e t a b o l i c p a t t e r n o f E_. co]_i_, when g r o w n u n d e r good •conditions,' resembles'that-of insight into this an a e r o b e w h i l e both anaerobic provided. a n d by Wimpenny phenomenon. aerobic i t s i m u l a t e s an a n a e r o b e when g r o w n Autotrophs, i n t h e absence o f oxygen. which a r e considered a step beyond heterotrophs i n e v o l u t i o n , a r e c o m p r i s e d o f a e r o b i c and a n a e r o b i c have developed different metabolic patterns. t h a t o b l i g a t e chemoautotrophs have e v o l v e d ancestors thiobacilli conserving and b l u e - g r e e n reducing Several algae proposed from h e t e r o t r o p h i c i n the loss species of autotrophic l a c k NADH o x i d a s e (thus power o f NADH) a n d a - k e t o g l u t a r a t e dehydrogenase a c t i v i t y , which results i n thedestruction o f the o f t h e o r g a n i s m t o u s e o r g a n i c compounds f o r g r o w t h a n d production o f energy l o s s o f NADH o x i d a s e ( S m i t h , London and S t a n i e r , defect However, i s not S t u d i e s oh N i t r o c y s t i s t o show t h a t o b i i g a t e a u t o t r o p h y metabolic 1967). and a - k e t o g l u t a r a t e dehydrogenase always t h e cause o f autotrophy. failed I t h a s been by e l i m i n a t i o n o f c e r t a i n enzymes r e s u l t i n g of heterotrophic metabolism. ability s p e c i e s and ( W i l l i a m s and Watson, was s o l e l y 1968). t h a t a n o r g a n i s m was a u t o t r o p h i c b e c a u s e oceanus due t o t h i s The a u t h o r s i t either concluded l a c k e d o r had low l e v e l s o f o n e o r more enzymes o r i t s membrane was n o t p e r m e a b l e to o r g a n i c molecules at a rate s u f f i c i e n t o f two o r more o f t h e s e It of i s thus and from t h i s i n f o r m a t i o n c o u l d be g a t h e r e d mechanisms v obvious d e f e c t s may be and l e v e l of carbon sources A combination expected. d i s c u s s i o n that a vast about t h e behaviour i n t h e o r g a n i s m by t h e s t u d y the nature f o r growth. amount and c o n t r o l o f i t s metabolic activity o f e n z y m e s p r e s e n t , when g r o w n on a v a r i e t y and e n v i r o n m e n t a l conditions. MATERIALS AND METHODS I . 0 rgari ? srfis arid Growth • Med i a Pseudomonas aeruginosa ATCC 9027 and Aerobacter aerogenes (departmental stock) were grown in Roux flasks without shaking at 30 C and 37 C respectively. NH H P0 , 0.3%; !j 2 Zf K HP0^, 2 The growth medium c o n s i s t e d o f 0.2%; iron as F e S O ^ H ^ , 0.5 p.p.m; MgS0^.7H 0, 0.05% and carbon source (minimal medium). 2 The pH was adjusted to 7.0 and s t e r i l e MgSO^^H^O and the carbon source were added to the autoclaved medium before inoculation., This medium without the carbon source w i l l be referred to as the basal salts medium. The organisms were grown with 0.2% carbon source for manometric experiments and with 0.3% when used for enzyme assays. The carbon sources used and their concentration as w e i r as-.pH of the medium when d i f f e r e n t than mentioned above wi11 be s p e c i f i e d . In some growth experiments the organisms were grown i n 2 5 0 ml side arm flasks in a shaking water bath and density of the culture was recorded with a Klett-Summerson colorimeter. Cultures were routinely checked for purity by'. streak?ng on suitable media. P. aeruginosa produces pyocyanine on King's medium (King, Ward and Raney, 1954) which was used to check the purity of this II. organism. o f R e s t i hg C e l 1 S u s p e n s i o n s Preparation The o r g a n i s m s w e r e h a r v e s t e d by c e n t r i f u g a t i o n temperature the in early logarithmic 0.01 M tris pH 7 - 0 . buffer, sodium c h l o r i d e stationary Extracts a t room phase f o r manometric s t u d i e s (hydroxymethyl)aminomethane (Tris) 0.3% In some e x p e r i m e n t s n e u t r a l i z e d s o l u t i o n was u s e d f o r w a s h i n g . Resting cell s u s p e n s i o n s w e r e o b t a i n e d by r e s u s p e n d i n g t h e p e l l e t i n 0.1 Tris For buffer, pH J.k, preparation of cell-free extracts 0 . 2 M T r i s b u f f e r , pH 1.k, of deoxyribonuclease t h e p e l l e t was t o a suitable concentration The c e l l s w e r e d i s r u p t e d and c e n t r i f u g e d and d e b r i s . referred e x t r a c t , was u s e d t o as t h e c e l l - f r e e e x p e r i m e n t s a n d f o r enzyme a s s a y s c e n t r i fuged every i n a French The s u p e r n a t a n t , f o r respirometry respectively. f r a c t i o n a t i o n was d e s i r e d the c e l l - f r e e extract f o r 30 m i n a t 2 5 , 0 0 0 x g_ a n d f o r 90 m i n a t 1 0 0 , 0 0 0 x £ i n a S p i n c o Model was and 1 drop a t 8 , 0 0 0 x g_ o r 2 0 , 0 0 0 x £ f o r 15 m i n t o remove w h o l e c e l l s was resuspended (1 mg/ml a q u e o u s s o l u t i o n ) was a d d e d f o r 2 . 0 ml o f t h e s u s p e n s i o n . When f u r t h e r M t o a p p r o x i m a t e l y 5 mg d r y w e i g h t o f c e l l s / m l . , in pressure c e l l or in p h a s e o f g r o w t h f o r enzyme a s s a y s . . T h e y w e r e washed t w i c e w i t h chloride and C e l 1 - F r e e L Ultracentrifuge. w a s h e d o n c e wrt-th 0.1 M Tris buffer, The 100,000 x £ p e l l e t pH 7 . 0 , a n d r e s u s p e n d e d a t a suitable c o n c e n t r a t i o n i n 0.2 M T r i s " P o t t e r " g l a s s homogenizer. scheme t h e y h a v e b e e n III. specified. a e r u g i n o s a 9 0 2 7 was grown w i t h s h a k i n g 7.4 w i t h 0.2% g l u c o s e other carbon equivalent pH When m o d i f i c a t i o n s w e r e made i n t h i s D e t e r r h i h a t i o n o f M o l a r G r o w t h Y i e l d on Di f f e r e h t P. pH b u f f e r , pH 7 . 4 , u s i n g a o f t h e medium was 6 . 7 above 7 . 7 . going t h e c o n c e n t r a t i o n a d d e d was i n o r d e r t o keep t h e f i n a l pH from C e l l s w e r e h a r v e s t e d a t room t e m p e r a t u r e a n d b u f f e r , pH 7 . 0 . T h e p e l l e t was i n t h e same b u f f e r t o a d e f i n i t e v o l u m e i n a volumetric flask volume o f t h i s weight When c o n t e n t o f g l u c o s e and t h e i n i t i a l washed t w i c e w i t h 0.025 M T r i s resuspended i n t h e medium a t (11.1 u m o l e / m l o f t h e m e d i u m ) . s o u r c e s were used, t o t h e carbon Substrates and d r y w e i g h t s suspension a t 95 t o 9 7 C; were determined on a s u i t a b l e by d r y i n g d u p l i c a t e samples t o a c o n s t a n t For c a l c u l a t i o n o f growth y i e l d s the value a t t h e p e a k o f t h e g r o w t h c u r v e was t a k e n . IV. I s o l a t i o n o f M u t a n t s o f P_. a e r u g i n o s a The followed. ^fumarate m e t h o d recommended by A d e l b e r g , M a n d e l a n d Chen Wild minimal type (1965) was l o g a r i t h m i c phase c e l l s were h a r v e s t e d medium b y c e n t r i f u g a t i o n a t room from temperature. The cell p e l l e t was washed t w i c e w i t h and resuspended and s h a k e n a t 30 was added t o g i v e a f i n a l C for 1 hr. the Again, this cell enrich f o r the mutants. a spread on This suspension s u c c i n a t e or 100 Ug/ml and was on fumarate minimal was then c h e c k e d by different patching on i n the and on eel Is , were a l s o i s o l a t e d i z a t i o n was medium c o n t a i n i n g a The small diluted for tricarboxylic For I t was glucose in these acid isolation was limiting c o l o n i e s were p i c k e d p l a t e c o u n t a g a r and carbon sources. a-ketoglutarate to i n fumarase a c t i v i t y , the suspension of glucose. salts medium c o n t a i n i n g (0.0\%)- o f a - k e t o g 1 u t a r a t e fumarate minimal concentration basal f o r 4 to 6 hr suspension i n some s t e p was volume i n n u t r i e n t b r o t h . incubated cell it then c e n t r i f u g e d l e a d i n g to b i o s y n t h e s i s of a - k e t o g l u t a r a t e . of mutants blocked on was The a c q u i r i n g mutants blocked spread of suspension t o the o r i g i n a l limiting concentration cycle concentration p e l l e t , a f t e r washing twice with resuspended 5.5 N-methyl-N'-nitro-N-nitrosoguanidine concentration min. medium, was and M c i t r a t e b u f f e r , pH i n t h e same b u f f e r a t t h e o r i g i n a l f u r t h e r s h a k e n f o r 45 a t 3 t o 4 C and 0.01 minimal and media containing found t h a t mutants u n a b l e t o grow w h i c h grew s l o w e r experiments. than w i l d Further a t t e m p t e d by m a n o m e t r i c e x p e r i m e n t s and type character- enzyme assays. V. Manometric Methods Utilization extracts of different substrates and c e l l 30 C u s i n g W a r b u r g VI. cell-free f r a c t i o n s was i n v e s t i g a t e d by c o n v e n t i o n a l manometric techniques endogenous by w h o l e c e l l s , (Umbreit, B u r r i s a n d S t a u f f e r , 1957) a t respirometers. C o r r e c t i o n s w e r e made f o r values. Enzyme A s s a y s Soluble Ochoa (1955) coenzymes. L-malic d e h y d r o g e n a s e was a s s a y e d a c c o r d i n g t o , using T r i s b u f f e r , pH 7 . 6 a n d NADH o r NADPH as Ethylenediamine tetraacetic acid ( E D T A ) , 5 mM was u s e d in the reaction mixture t o e l i m i n a t e t h e i n t e r f e r e n c e due t o m a l i c enzyme a c t i v i t y . M a l i c enzyme was a s s a y e d a t pH 8 . 5 , t h e method o f J a c o b s o n e t a l (1966). EDTA b u t w i t h o u t A c o n t r o l c o n t a i n i n g 5 mM MgC.^ was u s e d t o c h e c k was solely was measured s p e c t r o p h o t o m e t r i c a l l y using' indophenol due t o m a l i c e n z y m e . according i f the a c t i v i t y P a r t i c u l a t e L-malic measured dehydrogenase 2,6-dichlorophenol t o F r a n c i s e t _ a j _ (1963). a d d i t i o n o f 5 mM EDTA was u s e d t o c o n f i r m m a l i c enzyme a c t i v i t y using Again, the the elimination of w h i c h m i g h t show up due t o t h e p r e s e n c e o f endogenous coenzymes i n the c e l l - f r e e e x t r a c t s . For i s o c i t r a t e 7.8, dehydrogenase t h e r e a c t i o n m i x t u r e c o n t a i n e d T r i s b u f f e r , pH 50 mM; MgC.l 10. mM; NADP, 0 . 2 5 mM; D L - i s o c i t r a t e , 3 . 0 mM a n d t h e enzyme. T h e r e d u c t i o n o f c o e n z y m e was r e c o r d e d a t 3^0 A c o n i t a s e and fumarase (1950). were assayed DL-isocitric acid my. by t h e method o f R a c k e r ( p o t a s s i u m s a l t ) was p r e p a r e d f r o m i t s l a c t o n e a c c o r d i n g t o t h e p r o c e d u r e g i v e n by Hanson e t a l ( 1 9 6 3 b ) . a - K e t o g l u t a r a t e dehydrogenase Amarsingham and D a v i s coenzyme. (1965) was a s s a y e d u s i n g a c e t y l p y r i d i n e - N A D as t h e For s u c c i n i c dehydrogenase method d e s c r i b e d by K i n g Glutamate by t h e p r o c e d u r e o f the phenazine methosulfate ( 1 9 6 7 ) was u s e d . dehydrogenase was a s s a y e d i n a 1.0 ml reaction m i x t u r e w i t h NADH o r NADPH as t h e c o e n z y m e a n d e x c e s s NH^Cl and a-ketog1utarate (Von T i g e r s t r o m a n d C a m p b e l l , 1966a). When t h e a s s a y was i n t h e d i r e c t i o n o f a - k e t o g l u t a r a t e 1 ml o f t h e r e a c t i o n mixture c o n t a i n e d potassium phosphate b u f f e r , pH 8 . 0 , 50 mM; L - g l u t a m a t e , 25 mM; NAD o r NADP, 0 . 2 5 mM a n d t h e enzyme. was assayed by t h e d e t e r m i n a t i o n o f g l y o x y l a t e f o r m e d Isocitratase f r o m DL- i s o c i t r a t e by t h e a c t i o n o f t h e enzyme ( O z a k i a n d S h i i o , 1968). In some p r e l i m i n a r y e x p e r i m e n t s , h o w e v e r , t h e a c t i v i t y was by t h e method o f D i x o n and K o r n b e r g was assayed (1959). Succinyl sodium determined CoA s y n t h e t a s e by t h e h y d r o x a m a t e a s s a y method a s d e s c r i b e d by G i b s o n , Upper and G u n s a l u s (1967). the assay o f glucose-6-phosphate For b u f f e r , pH 8 . 0 , mixture contained Tris dehydrogenase 50 mM; M g C l , the reaction 5 . 0 mM; 2 0 . 2 5 mM; g l u c o s e - 6 - p h o s p h a t e , 2 . 5 mM a n d t h e c e l l - f r e e For 6-phosphogluconate was t h e same e x c e p t t h a t 6 - p h o s p h o g l u c o n a t e glucose-6-phosphate. Tris dehydrogenase assay, the reaction mixture was s u b s t i t u t e d f o r 50 mM; M g C l , 2 10 mM; A T P , 2 . 5 mM; g l u c o s e , 5 mM; NADP, 0 . 5 mM; t h e c e l 1 - f r e e e x t r a c t and e x c e s s glucose-6-phosphate dehydrogenase. was d e t e r m i n e d Glucose dehydrogenase by t h e combined measured and Campbell, 1966b). - using commercial l a c t i c dehydrogenase and The f o r m a t i o n o f 3 - p h o s p h o g l y c e r a l d e h y d e using commercial according Ling et_aj_ isomerase (Bock a n d N e i d h a r d t , I 9 6 6 ) i s o m e r a s e and f r u c t o s e d i p h o s p h a t a s e were a s s a y e d (1967). t o G a l e and Beck ( 1 9 6 6 ) was f o l l o w e d kinase a c t i v i t y (1967) aldolase t r i o s e phosphate 3-phosphoglyceraldehyde dehydrogenase Phosphohexose aldolase (Von T i g e r s t r o m from f r u c t o s e - 1 , 6 - d i p h o s p h a t e by f r u c t o s e d i p h o s p h a t e was m e a s u r e d Pyruvate a c t i o n o f 6-phosph and 2 - k e t o - 3 d e o x y - 6 - p h o s p h o g l u c o n a t e was activity commercial u s i n g t h e m e t h o d o f Hauge ( 1 9 6 6 ) . f o r m a t i o n from 6-phosphogluconate gluconate dehydrase extract. F o r g l u c o k i n a s e t h e r e a c t i o n m i x t u r e had b u f f e r , pH 8 . 0 , activity NADP, The m e t h o d d e s c r i b e d by f o r the assay o f phosphofructo- and t h a t o f D e V r i e s , Gerbrandy and f o rfructose-6-phosphate phosphoketolase. g l y c e r a l d e h y d e dehydrogenase b u f f e r , pH 7 . 4 , 50 mM; F o r 3-phospho- the reaction mixture contained Tris DL-3 phosphoglyceraldehyde, _ Stouthamer 6 mM; cysteine h y d r o c h l o r i d e , 10. mM; 20 mM; sodium a r s e n a t e , 17 mM; NADP o r NAD, 0 . 2 5 mM a n d t h e enzyme. sodium The f o l l o w i n g enzymes w e r e m e a s u r e d by t h e m e t h o d s d e s c r i b e d given a f t e r t h e name o f e a c h enzyme: t r i o s e 3-phosphoglyceric acid and 1966); enolase Tris i n the references phosphate isomerase k i n a s e ( C a m p b e l l , H e l l e b u s t and W a t s o n , ( W e s t h e a d , 1966) a s f o r t h e y e a s t enzyme b u t w i t h b u f f e r ; p y r u v a t e k i n a s e ( V a l e n t i n e and T a n a k a , 1 9 6 6 ) ; aldolase ( T c h o l a and H o r e c k e r , 1966); and r i b o s e (Axel rod and J a n g , 1 9 5 4 ) . the a c t i v i t i e s 50 mM; cysteine hydrochloride, commercial triose dehydrogenase. 1.5 phosphate The a b i l i t y action of several mM; mM; NADH, 0 . 2 5 mM; enzyme a n d e x c e s s i s o m e r a s e and a - g l y c e r o p h o s p h a t e of the cell-free extracts (i.e. ribose-5 phosphate) which - endogenous pentose phosphate r i b o s e phosphate b u f f e r , phi 8 . 0 , thiamine pyrophoshate, 1 ribose-5-phosphate t o glucose-6-phosphate forming a c t i v i t y from together with i s o m e r a s e and r i b u l o s e - 5 - p h o s p h a t e i n a system c o n t a i n i n g T r i s r i b o s e - 5 - p h o s p h a t e , 1 mM; trans- phosphate"isomerase Transketolase a c t i v i t y , o f r i b o s e phosphate e p i m e r a s e was a s s a y e d as fluoride, to transform glucose-6-phosphate involves the coupled pathway enzymes isomerase, r i b u l o s e - 5 p h o s p h a t e epimerase, _ such trans- k e t o l a s e a n d t r a n s a l d o l a s e was a s s a y e d a c c o r d i n g t o t h e p r o c e d u r e o f G a l e and Beck (1967). S p e c t r o p h o t o m e t r i c assays were performed e i t h e r s p e c t r o p h o t o m e t e r model DB-G specific; activities utilized or Gilford i n a Beckman model 2000 a t 30 C. a r e e x p r e s s e d a s mymoles o f t h e s u b s t r a t e p e r m i n p e r mg o f p r o t e i n . The 31 VII. Analysis of Reaction Products F o r t h e i d e n t i f i c a t i o n o f k e t o a c i d s o n e ml p o r t i o n s o f t h e spent reaction mixtures poured i n t o o n e ml o f a 1 u m o l e / m l s o l u t i o n o f 2 , 4 - d i n i t r o p h e n y l hydrazine i n 2 N HCl. centrifugation. min. from Warburg v e s s e l s o r from c u v e t t e s were The p r e c i p i t a t e d The s u p e r n a t a n t p r o t e i n was removed by was i n c u b a t e d The h y d r a z o h e s w e r e e x t r a c t e d i n t o e t h y l extracted a t 37 C f o r 30 a c e t a t e and r e - i n t o 1 M T r i s b u f f e r , pH 11 f r o m e t h y l acetate. The T r i s e x t r a c t was a c i d i f i e d w i t h 5 N HCl and t h e h y d r a z o h e s w e r e finally no. extracted into ethyl a c e t a t e a n d c h r o m a t o g r a p h e d on Whatman 4 paper using n-butanol-ethanol-0.5 described by S m i t h (1960). Standards samples were c o n c l u s i v e l y i d e n t i f i e d case and VIM. N NH^OH (70:10:20) a s w e r e r u n s i m u l t a n e o u s l y and by c o - c h r o m a t o g r a p h y . In t h e o f r a d i o a c t i v e samples, s t r i p s o f t h e chromatograms were c u t scanned i n an a c t i g r a p h Thin Layer (Nuclear Chicago). Chromatography, Autoradiography and R a d i o a c t i v e Measurements Reaction 0.12 ml o f 5.8 i n t h e W a r b u r g v e s s e l s was s t o p p e d by t h e a d d i t i o n o f M HC10. p e r ml o f r e a c t i o n m i x t u r e . The p r e c i p i t a t e d p r o t e i n was removed b y c e n t r i f u g a t i o n neutralized and 1967). chromatographed (TLC) A s u i t a b l e volume o f t h e s u p e r n a t a n t t w o - d i m e n s i o n a l l y on t h i n thin p u r p l e o r by a n i 1 i n e - r i b o s e ( H i g g i n s a n d Von B r a n d , on Kodak m e d i c a l contents corresponding p l a t e s were scraped counted X-ray films 1966). the autoradiograms f o r 7 t o 10 days. t o t h e d e s i r e d r a d i o a c t i v e s p o t s on t h e and p l a c e d i n a Nuclear Chicago i n the s c i n t i l l a t i o n scintillation o f S n y d e r and S t e p h e n s v i a l s and spectrometer t o l u e n e c o n t a i n i n g PPO, P0P0P a n d C a b - 0 - S i l procedure IX. by s p r a y i n g w i t h brom l o c a t e t h e r a d i o a c t i v e s p o t s on TLC p l a t e s , using chromatography I d e n t i f i c a t i o n of standards l a y e r c h r o m a t o g r a m s was a c h i e v e d were developed The layer f l u i d was p l a t e s c o a t e d w i t h e e l l u l o s e CC-41 a c c o r d i n g t o t h e cresol To bicarbonate p e r c h l o r a t e was removed by c e n t r i f u g a t i o n method o f M y e r s and Huang . ( 1 9 6 6 ) . on f l u i d was by t h e a d d i t i o n o f 0.24 ml o f 2 . 9 M p o t a s s i u m the precipitated (Weiss, and t h e s u p e r n a t a n t 725, model according t o the (1962). Uptake o f Label led S u b s t r a t e s The incorporation o f the labelled s u b s t r a t e s , glucose-U- 14 C 14 and a-methyl-g1ucoside-U- Millipore The C i n t o whole c e l l s was s t u d i e d b y t h e f i l t r a t i o n t e c h n i q u e o f B r i t t e n and M c C l u r e . ( 1 9 6 2 ) . l o g a r i t h m i c phase c e l l s w e r e h a r v e s t e d a t room a n d w a s h e d o n c e w i t h b a s a l s a l t s medium. temperature The p e l l e t was resuspended added of jet to 0.3 in the my. The addition by t h e New Y o r k ) of addition of intervals mixture on a T r a c e r l a b Waltham, Mass.) Millipore The placed in v i a l s by c o l l e c t i n g of filters 1iquid X. Protein Stern Corp., (1957). the 1 ml minimal y on a M a g - scintillation for prior to at the incubation (Tracerlab, medium. were s o u r c e and fluid counting (liquifluor, in a spectrometer. Methods Citrate determined was e s t i m a t e d P y r u v a t e was by t h e by t h e method o f Lowry method o u t 1 i n e d by assayed using l a c t i c pH 7 . 4 , d e h y d r o g e n a s e and NADH i n a s y s t e m c o n t a i n i n g T r i s buffer, NADH, 0 . 2 5 d e h y d r o g e n a s e and t h e sample. allowing to mM; c o m m e r c i a l a-Ketoglutarate the started pore s i z e infra-red Mass.) density terminated from and 0 . 4 5 of Boston, bath apparatus 2 ml o f under 10 ml containing optical Scientific, and was cells s u s p e n s i o n was were s t i r r e d C water precipitation c o n c e n t r a t i o n was et_ a_l_ ( 1 9 5 1 ) . the 25 mm d i a m e t e r scinti1lation Analytical E8B were d r i e d New E n g l a n d N u c l e a r a final T h e r e a c t i o n was substrate and w a s h i n g w i t h filters used. i n a 30 substrate. labelled desired give (Bronwi11, stirrer 10 m i n for radioactive to cel1 This incubation mixtures submergeable magnetic Rochester, medium. incubation mixtures 660 at s u c c i n a t e minimal lactic was e s t i m a t e d by the 40 mM; M g C l , reaction 2 5 mM; proceed in the d i r e c t i o n dehydrogenase Tris o f glutamate synthesis a n d e x c e s s ammonia. b u f f e r , pH 8.0, i n the presence o f g l u t a m i c The r e a c t i o n m i x t u r e c o n t a i n e d 40 mM; N H ^ C l , 200 mM;.NADH, 0.25 g l u t a m i c dehydrogenase mM; c o m m e r c i a l and t h e sample. S u c c i n a t e was a s s a y e d m a n o m e t r i c a l l y u s i n g c r u d e oxidase preparation f r o m b e e f h e a r t ( U m b r e i t £t_ aj_, succinic 1957). F u m a r i c a c i d was a l s o a s s a y e d m a n o m e t r i c a l l y i n a c o u p l e d a s s a y system using commercial fumarase; Lactbbaci1lus arabinosus-culture as a s o u r c e o f NAD, m a l i c enzyme a n d l a c t i c S e m i c a r b a z i d e was a l s o Lusty, T 9 6 3 ) . included XI. (Sanger and spectrophotometrically m a l i c dehydrogenase (Hohorst, 1963). Chemi c a l s Succinate-1,4International was i n the system M a l a t e was d e t e r m i n e d u s i n g NAD a n d c o m m e r c i a l dehydrogenase. 14 C and s u c c i n a t e - 2 , 3 Chemical - 14 C were the p r o d u c t s o f and N u c l e a r C o r p o r a t i o n . o b t a i n e d from Schwarz B i o r e s e a r c h Inc. Glucose-U- 14 C a-Methy1-D-gluco- 14 pyranoside-U- C was t h e p r o d u c t o f N u c l e a r C h i c a g o C o r p . c h e m i c a l s a n d enzymes u s e d obtained from commercial throughout t h i s sources. study were Other similarly RESULTS AND I . Oxidation DISCUSSION o f T r i c a r b o x y l i c A c i d C y c l e arid R e l a t e d I ri t e r m e d i a t e s by Pseudomonas ae r u g i h o s a Since and o t h e r cultures i t was proposed dicarboxylic were normally s u s p e n s i o n s and c e l l oxidized succinate, 1 a n d 2). higher acids extracts fumarate of a-ketoglutarate c i t r a t e only as this utilized a c e t a t e and p y r u v a t e substrate oxidation these substrates relatively of c e l l - f r e e results cultures rate similar for (Figs. the were o b t a i n e d Washed c e l l three oxidized extracts whole cells rapidly, cell-free extracts (Fig. 3). These or c o f a c t o r s , did observations required were d e s t r o y e d e x t r a c t , w h i l e those was with suspensions Although the t r i c a r b o x y l i c a c i d cyc|e undamaged. cell the t h e o r e t i c a l oxygen uptake o f a c e t a t e and p y r u v a t e , of from such cycle, Washed and m a l a t e a t a r a p i d immediately. i n d i c a t e d t h a t t h e enzymes preparation medium. a f t e r a l a g o f 60 m i n , w h i l e c e l l - f r e e utilized oxidation prepared Comparable substrate. succinate the t r i c a r b o x y l i c a c i d t h e c e l l - f r e e e x t r a c t a n d was dicarboxylic acids. not o x i d i z e of the u t i l i z a t i o n of g r o w n on s u c c i n a t e The p e r c e n t a g e with to study for the during required intermediates the for the were o ' 0 30 ' 60 ' 90 , 120 • t 150 MINUTES F i g . 1. Oxidation of s u c c i n a t e , fumarate. and malate by. c e l 1 suspensions • of P.-aeruginosa. The Warburg vessels contained T r i s . b u f f e r , . pH 7.4, 50 ymoles; c e l l suspension (5 mg dry weight); 7.5 ymoles of substrate in a total.-volume-of 3.0 m l . Center wel 1 contained 0.15 ml of 20% KOH.c: Symbols: •., succinate; A , malate; 0., fumarate I 0 60 120 180 240 MINUTES Fig. 2. O x i d a t i o n o f s u c c i n a t e , f u m a r a t e and m a l a t e by c e l l f r e e e x t r a c t o f P. a e r u g i n o s a . The W a r b u r g f l a s k s c o n t a i n e d T r i s b u f f e r pH 7 . 4 , 150 y m o l e s ; c e l l f r e e e x t r a c t a p p r o x . 30 mg p r o t e i n ; 7.5 y m o l e s s u b s t r a t e i n a t o t a l v o l u m e o f 3.0 m l . C e n t e r w e l l c o n t a i n e d 0.15 ml o f 20% K0H. Symbols: • , s u c c i n a t e ; A, m a l a t e ; 6 , fumarate.- MINUTES . O x i d a t i o n o f a c e t a t e and p y r u v a t e by c e l l s arid c e l l - f r e e e x t r a c t o f P. a e r u g i h o s a . The W a r b u r g v e s s e l s w e r e s e t up as f o r F i g s . 1 and 2. Symbols: open, c e l l s ; closed,', c e l l - f r e e e x t r a c t ; • , a c e t a t e ; O, pyruvate. 39 200 r 0 30 60 90 120 MINUTES Fig', k. • O x i d a t i o n o f s u c c i n a t e , , f u m a r a t e and m a l a t e ; ; by r e s t i n g c e l l s u s p e n s i o n o f P. a e r u g ? n o s a i n t h e . p r e s e n c e o f 1 mM s o d i u m . arsenite. Experimental c o n d i t i o n s ; w e r e s i m i l a r to those inF i g . 1. S y m b o l s , • , s u c c i n a t e ; A, m a l a t e ; O, fumarate. Table I. Accumulation of keto a c i d s during the o x i d a t i o n o f s u c c i n a t e , f u m a r a t e and m a l a t e i n t h e p r e s e n c e o f 1 mM s o d i u m a r s e n i t e . Carbon source i n the Warburg v e s s e l /., . • , \ (7.5 ymole) r Keto acid,, accumulated Pyruvate . ... y m o l e s 1 a-ketogl utarate , y m o l e s ... Succi nate 6.9 <0.2 Fumarate 6.5 <0.2 Malate 5.1 <0.2 In a s u b s e q u e n t experiment the o x i d a t i o n of the f i r s t a r s e n i t e was intermediate keto acid of o x i d a t i o n of the d i c a r b o x y l i c acids ( F i g . k). showed t h a t t h e s e compounds w e r e o x i d i z e d or pyruvate. pyruvate Paper i n every o f p y r u v a t e and that II. i n the prevent pathway Calculations to either oxalacetate c h r o m a t o g r a p h y showed t h e a c c u m u l a t i o n case. Table I shows t h e r e l a t i v e a-ketoglutarate. o f p y r u v a t e as was fumarate and of accumulation From t h e s e r e s u l t s u n d e r t h e c o n d i t i o n s e m p l o y e d , s u c c i n a t e was by way i t appeared oxidized solely malate. G r o w t h Y i e l d s o f P_. a e r u g i n o s a w i t h Some T r i c a r b o x y l i c Acid Cycle Intermediates In a f u r t h e r a t t e m p t differently t o see i f s u c c i n a t e was than o t h e r d i c a r b o x y l i c a c i d s , growth s u c c i n a t e , fumarate, malate and Glucose comparison I I ) . To e n s u r e (Table and i n the media were u t i l i z e d , were a n a l y z e d . instance. t o be I t was not attempted in aerobic metabolism with t h a t a l l of the s u b s t r a t e s supernatants from the growth t h a t no s u b s t r a t e r e m a i n e d (Campbel1 e t a l , 1956) i n the present accepted yields p y r u v a t e were i n c l u d e d f o r Under s i m i l a r c o n d i t i o n s o f growth c o m p l e t e l y used I f one found degraded a - k e t o g l u t a r a t e as s u b s t r a t e s were d e t e r m i n e d . was employed t o the statement t h e n one g l u c o s e was and media i n any found i t s estimation experiments. t h a t energy would expect i s never limiting that succinate, f u m a r a t e and be the On this malate would g i v e identical growth y i e l d s f o r i t would amount o f c a r b o n t h a t w o u l d d e t e r m i n e t h e basis succinate metabolism that are However, i f energy will be This latter not capable of entering s h a r e d by is limiting a f u n c t i o n of situation must be the f u m a r a t e and i n an state of aerobic t e s t e d when e x p r e s s e d on avai l a b l e electrons. the The basis malate of the operative of y i e l d average value per f o r gms 3.26 Therefore, under these c o n d i t i o n s observations t h o s e o f M a y b e r r y et_ a l _ (1967) , who or per gm atom o f the substrate cells per equivalent energy a v a i l a b l e from the constant the end anything -aerobic regardless products are i n the present substrates per (Table are of ll). i n agreement that in the mole o f the substrate carbon or per mole o f the oxygen a constant the y i e l d and was per close equivalent t o 3.14 gm of a v a i l a b l e e l e c t r o n s . It would appear that of the growth y i e l d substrate. route C t ^ and H^O) yield per consumed v a r i e d o v e r a w i d e r a n g e w h i l e o f a v a i l a b l e e l e c t r o n s was ± 0.1 reported c a s e o f b a c t e r i a grown a e r o b i c a l l y , y i e l d II). substrate. of c e l l s o f a v a i l a b l e e l e c t r o n s was the of (Table equivalent equivalent with pathways s i m i l a r f o r al1 growth y i e l d s are yield. system then growth reduction s i t u a t i o n w o u l d a p p e a r t o be f o r the growth is a function of Since this of degradation , one i s not about p o s s i b l e d i f f e r e n c e s i n routes b a c t e r i a by m e a s u r i n g g r o w t h yields. the is essentially (assuming going to that learn of metabolism in of Table II. Carbon source Growth y i e l d o f P. a e r u g i n o s a f r o m v a r i o u s c a r b o n s o u r c e s . Equivalent to available electrons per mole M o l a r growth y i e l d (gm/mole) Gm/equivalent of available electrons Gm/gm atom of carbon Glucose 24 79.0 3.29 13.2 Succinate 14 44.2 3.16 11.0 Fumarate 12 40.3 3.36 10.1 Malate 12 40.3 3.36 10.1 a-Ketoglutarate 16 51.1 3.19 10.2 Pyruvate 10 32.0 3.20 10.7 III. Studies All with Mutants a t t e m p t s t o i s o l a t e m u t a n t s o f P. a e r u g i n o s a t o g r o w on f u m a r a t e b u t c a p a b l e o f g r o w t h on s u c c i n a t e failure. M u t a n t s u n a b l e t o grow o n f u m a r a t e w e r e a l s o 9027 unable met w i t h incapable o f g r o w t h on s u c c i n a t e . The r e s u l t s presented to.support the suggestion utilization. utilization succinate above d i d n o t p r o v i d e t h a t t h e r e was a u n i q u e p a t h w a y o f s u c c i n a t e Hence, f u r t h e r s t u d i e s were f o c u s s e d of tricarboxylic acid cycle pseudomonads t h a n IV. o n . t h e mode o f intermediates with as t h e example t o e l u c i d a t e t h e r o l e and c o n t r o l o f t h e t r i c a r b o x y l i c acid c y c l e which obviously forming any e v i d e n c e bacilli seems t o be d i f f e r e n t i n i n f a c u l t a t i v e o r g a n i s m s and a e r o b i c as o u t l i n e d spore earlier. L a c k o f NAD o r NADP D e p e n d e n t L - M a l i c Dehydrogenase i n . P. a e r u g i n o s a P r e l i m i n a r y s t u d i e s on t h e u t i l i z a t i o n other o f s u c c i n a t e and dicarboxylic acids of the t r i c a r b o x y l i c acid indicated that c e l l - f r e e e x t r a c t s , without coenzymes, o x i d i z e d s u c c i n a t e , cycle the addition of f u m a r a t e and m a l a t e a t a r a p i d rate ( F i g . 2) and a l m o s t to completion. However, s e v e r a l attempts t o d e t e c t NAD o r NADP d e p e n d e n t L - m a l i c d e h y d r o g e n a s e i n t h e free extracts and i n t h e 100,000 x g_ s u p e r n a t a n t w e r e u n s u c c e s s f u l . Since a e r o b i c organisms possess a relatively p a r t i c u l a t e ' o r membrane b o u n d enzymes 25,000 x g_ and l a r g e number o f ( M a r r , 1960; Smith, 100,000 x g_ p e l l e t s w e r e a l s o s c r e e n e d 1961), f o r the p r e s e n c e o f t h i s enzyme w i t h t h e same n e g a t i v e r e s u l t s . ensure that the procedure of preparation of c e l l - f r e e and t h e a s s a y o f t h e enzyme w e r e n o t a t f a u l t , was prepared from A e r o b a c t e r aerogenes and showed a v e r y h i g h a c t i v i t y o f NAD (specific activity, V. assayed A. linked aerogenes c o n f i r m i n g t h a t the procedure being S ? te of Malate Oxidizing A c t i v i ty the f o r m a t i o n of o x a l a c e t i c a c i d to oxalacetate. acid is essential c y c l e , malate a "carrier type" experiment washed c e l l s u s p e n s i o n and Succinate-2,3- 14 for must To show t h a t o x a l a c e t a t e i s i n d e e d a p r o d u c t d u r i n g o x i d a t i o n o f m a l a t e by t h e c e l l s .employed. f o r NAD extract dependent L - m a l i c dehydrogenase the f u n c t i o n i n g of the t r i c a r b o x y l i c be o x i d i z e d extracts reliable. D e t e c t i b h and Since 3410) To a eel 1-free L - m a l i c d e h y d r o g e n a s e u n d e r t h e same c o n d i t i o n s . f o l l o w e d was cell- was carried out o f P_. a e r u g i n o s a , ( K r a m p i t z , 1961). c o n v e n t i o n a l Warburg t e c h n i q u e were C was tipped in at zero time, while A o x a l a c e t a t e was t i p p e d i n from t h e second s i d e arm a few m i n u t e s 60 u4 o f o x y g e n had b e e n consumed a s a l a t e r , when a p p r o x i m a t e l y F i v e t o 10 m i n a f t e r result of succinate oxidation. of unlabel led oxalacetate, the reaction mixtures prepared and chromatographed. identified as i n a l l the flasks the i n i t i a l substrate. enzyme) was i n c l u d e d of receiving radioactive succinate I f 3 - 3 mM EDTA (an i n h i b i t o r o f m a l i c i n the reaction mixtures, from L - m a l i c to determine i fthis a direct (Table I I I ) and Since pyruvate sequence o f o x i d a t i v e d e c a r b o x y l a t i o n species During f o roxalacetate formation then as observed ( F u l l e r and K o r n b e r g , I96I) o r whether s t u d i e s on t h e o x i d a t i o n o f L - m a l i c o f P s e u d o m o n a s , F r a n c i s ' e t ' a l (1963) o f Pseudomonas B^, a b a , p o s s e s s i n g w h i l e e x t r a c t s o f P. o v a l i s C h e s t e r , dehydrogenase, c a t a l y z e d oxidation of this substrate. found a c i d by two that extracts s o l u b l e NAD d e p e n d e n t L - m a l i c dehydrogenase, o x i d i z e d L-malate very L-malic oxalacetate o x i d a t i o n by a p a r t i c u l a t e m a l i c d e h y d r o g e n a s e was involved. species by w h i c h a n d R e m b e r g e r , 1 9 6 1 ) , an a t t e m p t was made r e c a r b o x y l a t i o n was u t i l i z e d i n a Chroma H u m accumulation ( F r a n c i s e t a l , 1963)• acid pseudomonads p o s s e s s t h e m a l i c enzyme (Seubert higher be d e m o n s t r a t e d . There a r e several a l t e r n a t i v e routes carboxylase were removed, hyd R a d i o a c t i v e o x a l a c e t a t e was radioactive oxalacetate could c o u l d be f o r m e d the addition s l o w l y and incompletely possessing p a r t i c u l a t e t h e r a p i d and a l m o s t This complete suggested a s i m i l a r i t y i n t h e enzyme c o m p l e m e n t o f P. a e r u g i n o s a 9 0 2 7 a n d P. o v a 1 i s Chester since the c e l l - f r e e extract preparations malate at a rapid rate. o f t h e former a l s o And i n d e e d i t was f o u n d t h a t does p o s s e s s t h e p a r t i c u l a t e L - m a l i c dehydrogenase Oxalacetic a c i d and p y r u v i c a c i d were i d e n t i f i e d reaction mixtures f o rp a r t i c u l a t e malic malic enzyme r e s p e c t i v e l y . To r e d u c e e n d o g e n o u s NAD o r NADP w h i c h m i g h t cell-free extracts comparable a c t i v i t y was In a n o t h e r a t t e m p t P. a e r u g i n o s a (Table I I I ) . i n t h e assay dehydrogenase interference and due t o be p r e s e n t i n c r u d e e x t r a c t s , m a l a t e o x i d i z i n g a c t i v i t y was a l s o a s s a y e d treated cell-free i n charcoal ( H o c h s t e r a n d S t o n e , 1956) a n d demonstrated. t o assess the importance o f the p a r t i c u l a t e malate o x i d i z i n g system, L-malate o x i d a t i o n cell-free The extract initial 74.6% a n d t h e 1 0 0 , 0 0 0 x g_ p e l l e t was s t u d i e d o f t h e t h e o r e t i c a l oxygen i t slowly required f o rcomplete o x i d a t i o n . oxidation by t h e p e l l e t . revealed C a l c u l a t i o n showed t h a t when l e v e l l i n g o f f , a p p r o x i m a t e l y 0.5 Analysis indicated of the reaction mixture f o r keto as t h e m a i n p r o d u c t a n d p y r u v a t e as T h i s amount o f p y r u v a t e c o u l d the non-enzymatic This either to oxalacetic acid or pyruvic oxalacetate a minor p r o d u c t . of 1 7 . 8 % o f t h e amount o f o x y g e n p e r u m o l e o f m a l a t e was t a k e n up. t h a t m a l a t e was o x i d i z e d acids (Fig. 5). uptake, whereas t h e resuspended p e l l e t and consumed o n l y curve started umole o f oxygen acid i n the c e l l - f r e e e x t r a c t a c t i v e l y o x i d i z e d m a l a t e a n d consumed oxidized the oxidized breakdown o f o x a l a c e t a t e . be t h e r e s u l t Table III. P a r t i c u l a t e m a l i c d e h y d r o g e n a s e and m a l i c i n P. a e r u g i n o s a Preparation Particulate malic . dehydrogenase enzyme NADP m a l i c enzyme NAD m a l i c enzyme Specific.Activity Cell-free extract 100,000 x £ p e l l e t 100,000 x g_ s u p e r n a t a n t 17.1 574.0 24.3 n i l nil 972.0 133.0 nil 194.0 C e n t r i f u g e d a t 100,000 x £ f o r 90 m i n t w i c e . If centrifugation was c a r r i e d o u t o n l y o n c e , a b o u t 10% d e h y d r o g e n a s e a c t i v i t y remained- i n the supernatant. 400 3OO < h- 200 z LU O >- X ° 100 60 MINUTES Fig. 5. • 90 120 ' O x i d a t i o n o f L-mal i c a c i d by (A) e e l 1 - f r e e e x t r a c t and .(B) 100,00Q\ x £ p e l l e t o f P. a e r u g i n o s a . / The r e a c t i o n m i x t u r e c o n t a i n e d 250 y m o l e s o f p o t a s s i u m p h o s p h a t e buffer,\ .pR 7.2; . 2.0 ml c e l l - f r e e e x t r a c t o r p e l l e t s u s p e n s i o n ; 7.5 y m o l e s o f m a l a t e i n a t o t a l / v o l u m e o f 3.0 m l . The c e n t e r wel1 o f t h e W a r b u r g v e s s e l c o n t a i n e d 0.15 ml o f . 20% KOH. : These o b s e r v a t i o n s show t h a t the malic dehydrogenase i s p a r t i c u l a t e and i s p r o b a b l y s i m i l a r i n d i s t r i b u t i o n ( F r a n c i s e t _ a j _ , 1963). P. O v a l i s C h e s t e r not exclude the p o s s i b i l i t y ribosomes. the To r e s o l v e this that 5 x 10\ then c e n t r i f u g e d resuspended much h i g h e r total t h a n t h e c o r r e s p o n d i n g p e l l e t , was t r e a t e d H_ EDTA and a l l o w e d J associated t o stand with a 2 5 , 0 0 0 x g_ s u p e r n a t a n t o f c e l l - f r e e e x t r a c t , which contained o f t h e enzyme However, t h e d a t a d i d t h e enzyme.was question to that i n a t 0 C f o r 15 m i n . a t 1 0 0 , 0 0 0 x g_ f o r 90 m i n . i n a s u i t a b l e volume o f 0.25 The p e l l e t activity with I t was was M_ T r i s b u f f e r , pH 7.4. "3 Portions of this EDTA a n d 500 ug p a n c r e a t i c 15 C f o r 4 h r . to avoid and t h e p e l l e t was w a s h e d o n c e w i t h so obtained IV shows t h a t this the ribonucleic acid A t t h e end o f t h e r e a c t i o n a t 1 0 0 , 0 0 0 x g_ f o r 90 m i n 0.25 resuspended M_ T r i s b u f f e r , pH enzyme 7-4. i n t h e same b u f f e r . from the p e l l e t I t i s seen t h a t indicating there t h e enzyme h a v i n g t h e same d i s t r i b u t i o n or being used Table t r e a t m e n t was q u i t e e f f e c t i v e i n r e m o v i n g most ribosome d e g r a d a t i o n . of was M_ ( W o r t h i n g t o n ) p e r ml a t The l o w t e m p e r a t u r e o f i n c u b a t i o n was t h e m i x t u r e was c e n t r i f u g e d The p e l l e t of ribonuclease i n a c t i v a t i o n o f t h e enzyme. period, 5 x 10 pel l e t s u s p e n s i o n were t r e a t e d w i t h solubilized. Therefore, i s not associated with i s no i n d i c a t i o n as r i b o n u c l e i c a c i d i t i s concluded ribosomes. extensive that this Table IV. E f f e c t o f EDTA a n d r i b o n u c l e a s e t r e a t m e n t o n t h e d i s t r i b u t i o n o f p a r t i c u l a t e m a l i c dehydrogenase o f f_. a e r u g i n o s a .j. i ^ ... Total protein Enzyme a c t i v i t y . 7 No. Fraction 7 I 1 (mg) I O.D. I sp. a c t . total a c t . 280/260 P31 IO (1) 1 0 0 , 0 0 0 x g_ p e l l e t 26.6 24.3 646.0 0.67 (2) (1) a f t e r EDTA and RNAse t r e a t m e n t 8.1 16.1 T30.5 0.688 100,000 x £ pel l e t o f (2) 5.8 19.85 115.0 0.966 7-3 0.607 (3) (4) 1 0 0 , 0 0 0 x £ s u p e r n a t a n t o f (2) 5V 2.5" 2.9 A f t e r c o r r e c t i n g f o r t h e q u a n t i t y o f RNAse a d d e d . U l t r a v i o l e t s p e c t r a f r o m 340 t o 230 mu o f a l l t h e f r a c t i o n s ; w e r e r e c o r d e d i n Beckman S p e c t r o p h o t o m e t e r model DB-G. 52 VI . L a b e l 1ing The malic but as f r o m S u c c i nate-1 ,4- above e x p e r i m e n t s i n d i c a t e d the C and S u c c i nate-2,3~ involvement of p a r t i c u l a t e dehydrogenase i n the d i r e c t o x i d a t i o n of malate t o d i d not exclude oxidative decarboxylation a sequence of malate. To activity i s the reactions f o r the vessels with important The system r e a c t i o n was NaHCO^ and substrates. i n the The reaction mixture ( F i g . 6). r e c y c l i n g of c i t r a t e , Oyketoglutarate the pH and The other 35% (see mutant c e l l s Warburg oxygen - P. aeruginosa aeruginosa oxidized 5% possess in w i l d type the of lacking M32, was reaction a-ketoglutarate. a-ketog1utaric t r i c a r b o x y l i c a c i d c y c l e and than C succinate s u p e r n a t a n t s of the showed a c c u m u l a t i o n o f enzymes a r e a t a l o w e r l e v e l footnote ( U m b r e ? t e t a l , 1957). t h e m u t a n t o f P. T a b l e V shows t h a t t h i s m u t a n t d o e s n o t d e h y d r o g e n a s e and oxalacetate e l i m i n a t e the p o s s i b i l i t y a n a l y s i s o f the for keto acids i n the dehydrogenase found to accumulate i n dehydrogenase, designated ( F i g . 7). incompletely To of from C or succinate-2,3- f l a s k s were gassed w i t h U n d e r t h e s e c o n d i t i o n s , c i t r a t e was mixtures of o x a l a c e t a t e formulated succinate-1,4- oxalacetate, recarboxylation formation c a r r i e d out carbon d i o x i d e mixture to maintain a l s o used formation a c i d a n o t h e r e x p e r i m e n t was of Table VI). slight and c o n c l u s i v e l y show t h a t p a r t i c u l a t e m a l i c from L-malic as of C?trate cells related C citrate I- F i g . 6. ETHER-FORMIC ACID-WATER Autoradiogram o f the t h i n - l a y e r chromatograph from the r e a c t i o n m i x t u r e c o n t a i n i n g e e l 1-free e x t r a c t o f P_. 'aeruginosa-wild type and r a d i o a c t i v e s u c c i n a t e . E x p e r i m e n t a l c o n d i t i o n s w e r e t h e same a s i n T a b l e VI. 54 •C-k-gl citrate ETHER-FORMIC ACID-WATER Fig. 7. A u t o r a d i o g r a m o f the t h i n - l a y e r chromatograph from t h e r e a c t i o n m i x t u r e c o n t a i n i n g c e l l - f r e e e x t r a c t o f R. a e r u g ? n o s a M32 a n d r a d i o a c t i v e s u c c i n a t e . Experimental c o n d i t i o n s w e r e t h e same a s i n T a b l e V I . a - k - g l = a-ketoglutarate. Table V. The t r i c a r b o x y l i c a c i d P. a e r u g i n o s a M32 Enzyme cycle and r e l a t e d Specific Activity Fumarase 380.0 Particulate malic dehydrogenase 6.9 Soluble malic dehydrogenase n i l Aconitase 3 5 . 5 I s o c i t r a t e dehydrogenase 1 4 6 . 0 a-Ketoglutarate dehydrogenase n i l NADP m a l i c enzyme 259.0 NAD m a l i c enzyme 5 7 . 0 mumoles s u b s t r a t e u t i l i z e d enzymes o f p e r m i n p e r mg o f protein. (Table IX). occurred C i t r a t e accumulation t o a much l e s s e r e x t e n t a c o n i t a s e and was isocitric almost completely and t h e enzyme f o r 15 Apparently t h i s was accumulation The 14 before mM of c i t r a t e , i s not The the assay. accumulation. The specific activity i n much clear. a c i d formed from s u c c i n a t e - c l o s e to double that obtained (Table V l ) . type in contact i n the mutant s t r a i n , which r e s u l t s s p e c i f i c a c t i v i t y of c i t r i c C was NaHCO^ i n both w i l d starting the cause o f c i t r a t e mechanism o p e r a t i n g lower min of aconitase i n t h e p r e s e n c e o f 21 i n the Warburg v e s s e l s ) t o 20 substrate Determinations t h e m u t a n t c e l l - f r e e e x t r a c t s , i f b i c a r b o n a t e was with 2,3" i n M32. the dehydrogenase i n d i c a t e d t h a t inhibited (the c o n c e n t r a t i o n used w i t h s u c c i n a t e as 14 from s u c c i n a t e - 1 , 4 - of c i t r a t e obtained C from 14 s u c c i n a t e - 1 ,4f r o m 84 t o 87 expected was C was percent close to that of s t a r t i n g of that value. i n the presence o f excess b i c a r b o n a t e as shown i n F i g s . 8a o x i d a t i v e d e c a r b o x y l a t i o n and any These r e s u l t s d i r e c t l y o x i d i z e d t o o x a l a c e t a t e and formation and 8b. then These data specific a c t i v i t y of starting be i f malic acid utilized r e c a r b o x y l a t i o n as from s u c c i n a t e - 1 ,4-^C could only importance f o r o x a l a c e t a t e formation, s i n c e c i t r a t e obtained substrate, varying for citrate eliminate a mechanism o f in this w o u l d h a v e one situation half the substrate while c i t r a t e obtained from 14 succinate-2,3 C w o u l d show d o u b l e t h e s p e c i f i c a c t i v i t y o f s t a r t i n g s u b s t r a t e w h i c h i s f o u r times t h a t of c i t r a t e formed - 14 from s u c c i n a t e - 1 , 4 Thus, the data C. presented h e r e have d e m o n s t r a t e d the involvement Table VI. Specific a c t i v i t y of radioactive c i t r a t e formed from succinate-1,4and succinate-2,3 C C - T e of C e l l . . free extract £ P_. aeruginosa 9027 W+ c Citrate formed per Warburg ^ . • vessel (ymoles) , . Substrate 3 v K ... succinate-1,4- C 2.91 6.85 84.0 succinate-,2,3- C 3.18 11.85 145.5 succinate-1,4- C 0.70 7.07 87.O c 0.76 13.60 162.0 14 P_. aerug?nosa 9027 M32 Sp. Act. Sp.Act. as % of Sp. , , , (cpm/ymole Act. of succinate x.10'5) . at zero time 14 succinate-2,3 - The reaction mixture in Warburg vessels contained T r i s buffer, pH 7.5, 50 mM; c e l l free extract equivalent to approximately 30 mg protein; NaHCO,, 21 mM; succinate1,4-^C or s u c c i n a t e - 2 , 3 ^ C , 7.5 ymoles (5 yc) in a total volume of 3.15 ml. KOH was not put in the center w e l l . Atmosphere^ a mixture of 95% O2 and 5% CO2. The reaction was stopped a f t e r 120 min. Zero time samples were prepared by addition of HC10. before adding succinate to the reaction mixture. -1 OH COOH H C-C OOH 2 HC-COOH HC-COOH H C-COOH HC-COOH H, C-COOH 2 HC-COOH II HC-COOH H.C-COOH r H C - COOH 2 y COOH 0 _ . i . / ' C H = 0 3 ^co„ CH,-CO~S -CoA • 3 • 0=-C —COOH 0=C-COOH I H C-COOH 2 COOH I HOOC-HoC-C-OH I H C-COOH 2 2 8a. H C-COOH H, C —COOH 2 COOH • COOH I HOOC-H C-C-OH HOOC-H •J 2 C-C-OH H C-COOH P 2 H C-COOH 2 C i t r a t e f o r m a t i o n f r o m s u c c i n a t e - 1 ,h- C R a d i o a c t i v e c a r b o n i s i n d i c a t e d by a s o l c i r c l e (•). Fig. 8b. Citrate formation Radioactive carbon cTrcle (•). from s u c c i n a t e - 2 , 3 i s indicated C. by a s o l i d VJI oo o f t h e NAD, NADP i n d e p e n d e n t p a r t i c u l a t e m a l i c d e h y d r o g e n a s e in t h e o x i d a t i o n o f m a l a t e t o o x a l a c e t a t e and t h e p a t t e r n o f labelling of citrate o b t a i n e d from s u c c i nate-1 ,4-^C and 14 succinate-2,3" VII. C has e l i m i n a t e d any o t h e r p o s s i b i 1 i t y . O x i d a t i o n o f S u c c i n a t e , Fumarate a n d M a l a t e by a C e l 1 - F r e e E x t r a c t o f A. a e r o g e n e s , S i n c e t h e r e a r e d i f f e r e n c e s between t h e m a l a t e systems o f P. a e r u g i n o s a and A. a e r o g e n e s , t h e o x i d a t i o n o f dicarboxylic acids was a l s o s t u d i e d oxidized and in cell-free ( F i g . 9). extracts of the latter A cell-free extract t h e s e , compounds o n l y v e r y s l o w l y . fumarate were u t i l i z e d is j u s t oxidizing Initially These f i n d i n g s a r e i n agreement w i t h Jones (1968) who h a v e r e p o r t e d i n t h e Warburg v e s s e l s t h a t a t 60 m i n , 4.1 y m o l e s reaction mixture. malate the observations o f . such receiving differences Determination succinate o f malate accumulated showed i n t h e A_. a e r o g e n e s A l t h o u g h P. a e r u g i n o s a c e l l - f r e e extract showed some m a l a t e a c c u m u l a t i o n , t h e amount was o n l y 0.57 per also ymoles vessel. The that which P. a e r u g i n o s a . b e t w e e n pseudomonads a n d t h e c o l i f o r m g r o u p . of malate aerogenes a t a slower rate than s u c c i n a t e the opposite t o the s i t u a t i o n with and K i n g o f A. organism pattern o f oxidation o f these d i c a r b o x y l i c acids P. a e r u g i h o s a h a s an a d v a n t a g e o v e r A. a e r o g e n e s indicates because 60 0 60 120 MINUTES Fig. v 9. 180 240 , O x i d a t i o n o f s u c c i n a t e , f u m a r a t e and m a l a t e by e x t r a c t s . o f A . . a e r o g e n e s . The r e a c t i o n m i x t u r e s s e t up as i n F i g . 2. S y m b o l s ; • , s u c c i n a t e ; A, •'. O, f u m a r a t e . cell-free were malate; • t h e l a t t e r o r g a n i s m d e p e n d s on t h e a v a i l a b i l i t y the o x i d a t i o n o f malate. aerogenes obviously The u t i 1 i z a t i o n is a limiting i n pseudomonads and c o l i f o r m s s u c c i n i c oxidase system. step. o f m a l a t e by A_. Oxidation of succinate i s catalyzed This o f f r e e NAD f o r by t h e p a r t i c u l a t e could explain the rapid oxidation o f s u c c i n a t e by t h e c e l l - f r e e e x t r a c t s o f b o t h g r o u p s o f o r g a n i s m s The m a l a t e o x i d a s e s y s t e m has b e e n shown t o c o n t a i n p r o s t h e t i c group 1966) i n P. o v a l i s C h e s t e r ( P h i z a c k e r l e y a n d and A c e t o b a c t e r x y l i h u m ( B e n z i m a n initial, rapid FAD a s t h e and G a l a n t e r , 1 9 6 4 ) . o f A_. a e r o g e n e s c a n be a s c r i b e d the p a r t i c u l a t e malate oxidase system. i n the c e l l t o the possession o f Thus, organisms possessing particulate L - m a l i c dehydrogenase are b e t t e r equipped f o r utilization of dicarboxylic acids since their compounds of free VIII. The r a t e o f o x i d a t i o n o f m a l a t e and f u m a r a t e o b s e r v e d i n t h e c e l l - f r e e e x t r a c t o f P. a e r u g i n o s a and n o t s e e n free extract Francis, i s not rate limited activity on t h e s e by t h e l a c k o f a c o n s t a n t s u p p l y NAD. The Enzymes o f C a r b o h y d r a t e M e t a b o l i s m i h P_. a e r u g i n o s a Grown i n S u c c i n a t e o r Glucose Media The pseudomonads p o s s e s s a g r e a t c a p a c i t y nutritional activity environment. That the t r i c a r b o x y l i c i s c o n s t i t u t i v e and i s o f s p e c i a l metabolism t o adapt t o t h e i r i n these organisms acid cycle importance i n the i s s u p p o r t e d by t h e s t u d y o f t h e p a t t e r n o f u t i l i z a t i o n o f s u c c i n a t e and The organisms t h e y showed a g r o w n on s u c c i n a t e d i d s o w i t h o u t a l a g , w h i l e l o n g l a g i n g l u c o s e medium medium c o n t a i n i n g b o t h was o b t a i n e d and observed glucose. s u c c i n a t e and initially ( F i g . 10). In the g l u c o s e , the d i a u x i c the growth p a t t e r n resembled growth that i n s u c c i n a t e medium. Figure 11 s u c c i n a t e and glucose. shows t h e g r o w t h pattern in glucose, glucose s u c c i n a t e media o f organisms T h e r e was no d i a u x i c g r o w t h on no p r o n o u n c e d p r e v i o u s l y grown l a g on s u c c i n a t e medium plus on and t h e medium c o n t a i n i n g g l u c o s e p l u s succi nate. Very s i m i l a r p a t t e r n s w e r e o b t a i n e d when r e s t i n g cell suspensions, harvested from g l u c o s e o r s u c c i n a t e media, t h e s e compounds 12 and (Figs. i n g l u c o s e medium o x i d i z e d theoretical oxygen uptake 13). The extracts a t 240 min, ( F i g . 14). 1 Umole o x y g e n was of the i n t h e a b s e n c e o f a d d e d c o f a c t o r s , h o w e v e r , was level is oxidized (Campbel1 e t a l , 1 9 5 6 ) . g r o w n i n s u c c i n a t e medium o x i d i z e d the weaker a c t i v i t y The but d i d not o x i d i z e This behaviour s i n c e under these c o n d i t i o n s g l u c o s e gluconate e x t r a c t o f the c e l l s indicated The the glucose consumed cell-free t o be o n l y t o the e x t r a c t of the expected 2-ketocells glucose very slowly suggesting of glucose oxidase above r e s u l t s grown s u c c i n a t e r a p i d l y consuming 65% o f beyond t h e s t a g e where a p p r o x i m a t e l y per umole o f g l u c o s e oxidized system. t h a t t h e enzymes n e c e s s a r y the u t i l i z a t i o n o f s u c c i n a t e were p r e s e n t in cells grown on for either 63 I O H 0 « 120 • 240 360 480 Minutes • F i g . 10. • G r o w t h o f s u c c i n a t e grown i n o c u l u m i n t h e m e d i a c o n t a i n i n g ' succinate, glucose or succinate + glucose. Log/phase e e l I s f r o m s u c c i n a t e m i n i m a l medium w e r e h a r v e s t e d , washed o n c e and i n o c u l a t e d i n t h e m e d i a . ! Incubation'.'was. a t 37 C w i t h s h a k i n g . . S y m b o l s : O, 0 . 2 % . s u c c i n a t e ; # , 0 . 2 % g l u c o s e ; • , 0.04% s u c c i n a t e + 0.2% g l u c o s e . . 10 «— 0 120 » 240 Minutes 11.' . > i 360 480 \, G r o w t h o f g l u c o s e grown i n o c u l u m ' i n m e d i a c o n t a i n i n g g l u c o s e , succinate or glucose + succinate. Experimental conditions w e r e t h e same as i n F i g . 10.. S y m b o l s : O, 0.2% s u c c i n a t e ; : •,' 0.2% g l u c o s e ; •, 0.04% g l u c o s e + 0.2% s u c c i n a t e . 60 120 180 240 INUTES Fig. 12. Oxidation of succinate, glucose or a mixture of succinate and g l u c o s e by c e l l s h a r v e s t e d f r o m a s u c c i n a t e m i n i m a l medium. The W a r b u r g v e s s e l s w e r e s e t up as i n F i g . .1. S y m b o l s : • , s u c c i n a t e , 7.5 p m o l e s ; A, g l u c o s e , 5.0 y m o l e s ; O, s u c c i n a t e , 3.75 y m o l e s + g l u c o s e , 2.5 ymoles. 66 0 20 40 60 80 100 120 MINUTES Fig. 13'.;V O x i d a t i o n o f s u c c i n a t e , g l u c o s e o r a: m i x t u r e o f . s u c c i n a t e ' + g l u c o s e by c e l l s h a r v e s t e d f r o m a g l u c o s e medium. The e x p e r i m e n t a l c o n d i t i o n s and t h e s y m b o l s u s e d a r e s i m i l a r t o t h o s e i n F i g . 12. 140 400 r 0 60 . 120 180 240 MINUTES .14. O x i d a t i o n o f g l u c o s e ;and s u c c i n a t e b y . t h e e e l 1 - f r e e e x t r a c t s f r o m t h e . c e l l s grown i n g l u c o s e (o) o r s u c c i n a t e (•) m e d i a . The W a r b u r g v e s s e l s w e r e s e t up a s i n F i g . 2. Symbols: open.,, r e c e i v i ng 7 i 5 . y m o l e s s u c c i n a t e ; c l o s e d , r e c e i v i n g 5.0 y m o l e s g l u c o s e . g l u c o s e o r s u c c i n a t e medium, w h e r e a s t h e enzymes o f g l u c o s e o x i d a t i o n were e i t h e r medium. low o r n o t d e t e c t a b l e i n c e l l s The a b s e n c e o r p r e s e n c e harvested from o f o n l y a low l e v e l the succinate o f t h e enzymes o f g l u c o s e o x i d a t i o n i n p s e u d o m o n a d s , when grown on tricarboxylic acid (Hamilton and c y c l e i n t e r m e d i a t e s , has b e e n r e p o r t e d e a r l i e r Dawes, 1960; Von T i g e r s t r o m and C a m p b e l l , Dawes, 1967; metabolism 1967a), b u t t h e d e t a i l e d L e s s i e and N e i d h a r d t , study o f the level o f t h e enzymes has n o t been c a r r i e d regulating out. grown 1. metabolism i n s u c c i n a t e o r g l u c o s e medium was Glucose degrading o r at a very these pathways would attempted. t h e enzymes o f t h e p a t h w a y and t h e o x i d a t i v e p o r t i o n o f p e n t o s e were e i t h e r absent low l e v e l (Table V I I ) . that I t h a s b e e n r e p o r t e d t h a t t h e Embden- has n o t been d e f i n e d . the organism This f u n c t i o n i n g o f t h e Embden-Meyerhof pathway. a s s a y was c h e c k e d but the investigation lacks phosphofructokinase, phosphofructokinase Hence, be u n a v a i l a b l e f o r t h e o x i d a t i o n o f by r e c y c l i n g . reason Entner-Doudoroff phosphate pathway M e y e r h o f p a t h w a y i s n o t o p e r a t i v e i n P. a e r u g i n o s a actual in enzymes In s u c c i n a t e g r o w n c e l l s substrates the pattern o f Therefore, the determination o f t h e l e v e l s o f t h e enzymes o f c a r b o h y d r a t e cells 1966b; Ng a n d thus has shown preventing the Validity by p r e p a r i n g a of cell-free Table VI I. A c t i v i t y of some enzymes of carbohydrate metabolism in P. aerugi nosa grown in succinate or glucose media. Speci f ? c Act ? vi ty Enzyme Succinate medium Glucokinase G1ucose-6-phosphate dehydrogenase , 6-Phosphog1uconate dehydrogenase Glucose medium 16.4 98.7 2.4 224.0 nil 26.0 6-Phosphogluconate dehydrase + 2-keto-3 deoxy-6-phosphogluconate aldolase <1 49.2 Phosphohexose isomerase 35.7 43.1 _ Phosphofructokinase nil nil Fructose diphosphatase 36.0 39.0 Fructose-1,6-diphosphate aldolase 74.6 93.0 1780.0 1145.0 76.0 346.0 15-0 81.0 435.0 375.0 Enolase 408.0 635.0 Pyruvate kinase .61'.8 71.6 Triosephosphate isomerase NADP 3-phosphoglyceraldehyde dehydrogenase NAD 3 phosphoglyceraldehyde - dehydrogenase 3-Phosphoglycerate kinase Transketolase 33'.3 ' 41.0 Transaldolase 12.0 12.0 S p e c i f i c a c t i v i t y = mymoles substrate u t i l i z e d per min per mg of protei extract o f A. a e r o g e n e s and a s s a y i n g A. a e r o g e n e s showed h i g h activity extract o f 292.0). under the s i m i l a r a c t i v i t y o f t h i s enzyme The a s s a y s f o r t h i s enzyme of phosphofructokinase t h e same n e g a t i v e i s associated with 1 9 5 4 ) ; Z_. mobi 1 i s (Raps and DeMoss, of Rhodotorula and Neidhardt (Wood a n d their fructose diphosphate aldolase species However, strain o f P. activity. i n the s t r a i n studied by L e s s i e and Lessie aeruginosa I t i s seen that be s y n t h e s i z e d r e v e r s a l o f Embden-Meyerhof scheme, but t h i s w i l l possible Lack Schwerdt, 1962) and s e v e r a l (Brady and Chamb1iss, 1967). (1967a) found t h a t results. P_. a e r u g i n o s a 9 0 2 7 h e x o s e p h o s p h a t e s c o u l d the in a cell-free absence o f f u n c t i o n i n g E m b d e n - M e y e r h o f p a t h w a y i n P;. f 1 u o r e s c e n s in (specific o f P. a e r u g i n o s a w e r e a l s o c a r r i e d o u t i n t h e p r e s e n c e of phosphoenolpyruvate with lacked conditions. n o t be Neidhardt. T h r e e - p h o s p h o g l y c e r a l d e h y d e d e h y d r o g e n a s e showed h i g h e r with NADP as t h e c o e n z y m e . higher level i n g l u c o s e grown c e l l s t h a n The enzymes whose level have been s u g g e s t e d in The o f t h i s enzyme was i n c e l l s g r o w n on fluctuates with t o be r e g u l a t o r y . nutritional This by enzyme activity much succinate. conditions i s involved t h e a c t i v i t i e s o f t h e E n t n e r - D o u d o r o f f pathway, t h e Embden-Meyerhof p a t h w a y a n d p e n t o s e p h o s p h a t e c y c l e and may in the r e g u l a t i o n o f metabolism. in later This have s p e c i a l aspect w i l l be importance discussed sections. A consideration of pentose phosphate c y c l e a c t i v i t y i n g l u c o s e grown and s u c c i n a t e grown c e l l s b r i n g s out a very interesting Fig. 15'). activities phosphate pattern of metabolism o f pentoses When grown activities i n a g l u c o s e medium c e l l s o f a l l t h e enzymes a s s a y e d indicating p a t h w a y c o u l d o p e r a t e as a c y c l e the s u b s t r a t e s . (Table V I I , VIM exhibited that the H o w e v e r , i n s u c c i n a t e grown c e l l s , w h i l e identical to those i n glucose c e l l s , glucose-6-phosphate dehydrogenase this cycle indicated dehydrogenase that hexoses i n these c e l l s . a c t i v i t y , which o f hexose the o f pentose phosphate activities carbohydrates In an e f f o r t o f the anaerobic c y c l e m e a s u r e d by transformation low i n t h e that importance i n degrading i f the a b i l i t y t o form g l u c o s e - r i b o s e - 5 p h o s p h a t e i s i n d u c e d by g l u c o s e , an - e x p e r i m e n t was l e v e l was f o u n d t o be cells. t o determine aldehyde dehydrogenase its for degradation t o g l u c o s e - 6 - p h o s p h a t e was in these 6-phosphate from activity c y c l e are not o f cycle, phosphoketolase i n s u c c i n a t e medium, a g a i n i n d i c a t i n g reactions of this trans- c a n n o t be u t i l i z e d v i a ( D e V r i e s e t a l , 1 9 6 7 ) , was p o r t i o n of the pentose phosphate additional the 6-phosphogluconate Fructose-6-phosphate A l s o , the o v e r a l l grown and i s i m p o r t a n t i n some b a c t e r i a phosphates insignificant. organisms pentose f o r the breakdown o f o f t h e enzymes o f o x i d a t i v e p o r t i o n o f p e n t o s e p h o s p h a t e i.e. good o f r i b o s e p h o s p h a t e i s o m e r a s e , t r a n s k e t o l a s e and a l d o l a s e were and assayed was undertaken. also Since 3-phosphoglycer- f o u n d t o be a r e g u l a t o r y i n t h i s experiment ( F i g . 16). a p p a r e n t t h a t on t h e t r a n s f e r o f s u c c i n a t e c e l l s enzyme, It i s t o the glucose Table V I M . G1 u c o s e - 6 - p h o s p h a t e f o r m i n g a c t i v i t y from r i bose-5-phosphate and r i bosephosphate isomerase a c t i v i t y . Growth Glucose Ribosephosphate isomerase G1ucose-6-phosphate forming a c t i v i t y from r i b o s e - 5 phosphate " medium Succinate 0.33 0.30 28.0 2.5 - 1 T h e a c t i v i t y o f r i b o s e p h o s p h a t e i s o m e r a s e i s e x p r e s s e d as A O.D. 520 my p e r m i n p e r mg o f p r o t e i n . The r e a c t i o n was a l l o w e d t o p r o c e e d f o r 20 m i n . The a c t i v i t y i s e x p r e s s e d as mymoles NADP r e d u c e d p e r m i n p e r mg o f p r o t e i n . 0 5 10 15 MINUTES 15. ; G 1 u c o s e ^ 6 - p h o s p h a t e f o r m a t i o n f r o m r i b o s e - 5 - p h o s p h a t e by P. a e r u g i n o s a g r o w n i n s u c c i n a t e (•, 1.2 mg p r o t e i n ; • , 0.6 mg p r o t e i n ) o r g l u c o s e ( o , 0.315 mg p r o t e i n ) m e d i a . One ml r e a c t i o n m i x t u r e c o n t a i n e d T r i s b u f f e r , pH 8.0, 50 mM; t h i a m i n e - p y r o p h o s p h a t e , . 0.5 mM; r i b o s e - S ^ p h o s p h a t e , 2.0 mM; NADP, 1 mM; c o m m e r c i a l glucose-6-phosphate d e h y d r o g e n a s e and c e l l - f r e e e x t r a c t . In A, NADP t o s t a r t t h e r e a c t i o n was a d d e d a f t e r 40 m i n i n c u b a t i o n o f t h e . a s s a y r e a c t i o n m i x t u r e a t room t e m p e r a t u r e . 20 74 HOURS Fig. 16. Increase i n the level of 3-phosphoglyceraldehyde dehydrogenase and g I u c o s e - 6 - p h o s p h a t e f o r m i n g a c t i v i t y f r o m ribose-5 phosphate, oh - s h i f t : f r o m s u c c i n a t e t o g l u c o s e medium. Log p h a s e c e l l s f r o m . s u c e i n a t e medium w e r e h a r v e s t e d , washed, i n b a s a l . s a l t s medium and i n o c u l a t e d i n t o 0 . 3 % g l u c o s e medium i n ' E r l e n m e y e r f l a s k s . . I n c u b a t i o n was a t 30 C w i t h s h a k i n g . Samples were t a k e n o u t a t d e s i r e d i n t e r v a l s a n d u s e d f o r enzyme a s s a y s . S y m b o l s : o, o p t i c a l d e n s i t y ; •, 3-phosphoglyceraldehyde d e h y d r o g e n a s e ; A, G-6-P f o r m a t i o n f r o m R-5-P ( m y m o l e s / min/mg o f p r o t e i n ) . - medium these a c t i v i t i e s are greatly increased. 3-phosphoglyceraldehyde dehydrogenase easily The i n c r e a s e i n g l u c o s e medium can be r a t i o n a l i z e d f o r 3-phosphoglyceraldehyde i s a product o f E n t n e r - D o u d o r o f f pathway a c t i v i t y on g l u c o s e . increase the c a p a c i t y In o r d e r to t o u t i l i z e t h i s s u b s t r a t e and d i r e c t it the t r i c a r b o x y l i c a c i d c y c l e , h i g h a c t i v i t y o f t h i s enzyme necessary. This i s not so in a s u c c i n a t e phosphoglyceraldehyde dehydrogenase reversal and hexoses f o r c e l l From the above o b s e r v a t i o n s i n o r d e r to grow on s u c c i n a t e intermediate, medium where 3 is u t i l i z e d o n l y f o r o f Embden-Meyerhof r e a c t i o n s s i z i n g pentoses cycle in to is - limited f o r the purpose of s y n t h e biosynthesis. i t c o u l d be concluded t h a t or any o t h e r t r i c a r b o x y l i c a c i d t h i s organism must u t i l i z e the transketolase r e a c t i o n , u s i n g compounds which c o u l d be d e r i v e d from t r i c a r b o x y l i c acid cycle intermediates, of the s e v e r a l alternative t o s y n t h e s i z e pentoses reactions (Racker, by one o r more 1954; Sable, 1966). These mechanisms c o u l d be summarized as f o l l o w s : - 1) F r u c t o s e - 6 - p h o s p h a t e Pentose; phosphate + + 2) Triose-phosphate Erythrose-4-phosphate Triose-phosphate Pentose + An " a c t i v e g l y c o l a l d e h y d e " donor ( e . g . Hydroxypyruvate) phosphate Evidence o f such laboratories. DeLey were an reactions organism confirmed transketolase-transaldolase i n pentose phosphate s y n t h e s i s by t h e w o r k o f F o s s i t t and B e r n s t e i n A similar (1963). faeca1is involvement o f such Wang e t phosphate p e n t o s e s by a l t e r n a t e c o n c l u s i o n was drawn by L e s s i e a n d N e i d h a r d t (1967a) i n d i s c u s s i n g s u c c i n a t e Streptococcus T h i s was grown P. a e r u g i h o s a l a c k e d t h e p a t h w a y a n d t h e r e f o r e , must s y n t h e s i z e oh i n P_. s a c c h a r o p h ? l a , o f the o x i d a t i v e p o r t i o n o f t h e pentose schemes. reactions l a c k i n g 6-phosphogluconate dehydrogenase. a l _ (1959) p r o p o s e d t h a t g l u c o n a t e activity h a s come f r o m many The w o r k o f DeLey and D o u d o r o f f a s q u o t e d by (1960) showed t h a t involved i n pseudomonads grown P. a e r u g i n o s a . and A l c a l i g e n e s reactions Studies faecal is also i nbiosynthesis showed o f pentoses ( S a b l e , 1966). 2. T r i c a r b o x y l i c a c i d c y c l e a n d r e l a t e d enzymes a. T r i c a r b o x y l i c a c i d c y c l e The activity r e s u l t s o f s t u d i e s on t h e enzymes o f g l u c o s e o x i d a t i o n d i d n o t a c c o u n t f o r t h e growth and o x i d a t i o n of glucose and s u c c i n a t e grown c e l l s or a mixture o f these substrates. glucose medium u t i l i z e d i n media w i t h The c e l l s succinate without one o f these harvested a lag. pattern from Therefore, a study of the levels t y p e s o f c e l l s was study of t r i c a r b o x y l i c considered acid essential. i s t h e o n l y pathway left o f the Entner-Doudoroff not Table IX shows t h e a c t i v i t y important i n t h i s medium, t h e the pentose phosphate i n the c e l l s a-ketoglutarate and of these and s u c c i n a t e + glutamate media. t h a t t h e s e compounds w e r e u t i l i z e d succinate f o r growth. The activities c y c l e e n z y m e s w e r e c o m p a r a b l e and The v a r i a t i o n s observed and a-ketoglutarate The level as g r e a t Again, cells as observed i n the in cells i n spore forming bacilli (Gray present i n t h e m e d i a do leading to a-ketoglutarate not i s not i n d i c a t e that the a c t i v i t y with aconitase to be'reproducible. about deserved twice f u r t h e r study. m e c h a n i s m on the s i m i l a r t o the (Hanson and Cox, shut o f f the a c t i v i t y formation. glutamate tricarboxylic levels of et a l , 1966b), s i n c e a-ketoglutarate E. c o l ? rates g r o w n on s u c c i n a t e . r e g u l a t o r y and cycle activity or growth no s t r i k i n g d i f f e r e n c e s a l s o show t h a t t h e c o n t r o l tricarboxylic acid recycling. Higher o f most o f t h e dehydrogenase were found t h i s enzyme c o u l d be These r e s u l t s pathway simultaneously o f p a r t i c u l a t e m a l i c d e h y d r o g e n a s e was in glucose activities g r o w n on g l u c o s e , s u c c i n a t e , s u c c i n a t e + indicated were seen. aerug1nosa r e l a t e d enzymes f o r s u c c i n a t e media supplemented w i t h a - k e t o g l u t a r a t e acid two detailed a d e q u a t e f o r t h e o x i d a t i o n o f t h e c o m p o u n d s , by comparison on p a t h w a y and becomes i n the a t t h e d i s p o s a l o f P. grown on s u c c i n a t e s i n c e , d u r i n g g r o w t h are Moreover, the of t r i c a r b o x y l i c acid cycle a c t i v i t y because t h i s c y c l e enzymes These pattern 1967) and and glutamate o f enzymes observations of the t r i c a r b o x y l i c a c i d cycle in Table IX. Specific a c t i v i t i e s o f the t r i c a r b o x y l i c acid cycle and r e l a t e d enzymes, i n P. a e r u g i n o s a g r o w n w i t h d i f f e r e n t carbon sources Growth Enzyme Glucose 44.0 Aconi tase NADP i s o c i t r a t e NAD i s o c i t r a t e dehydrogenase dehydrogenase a-Ketoglutarate Succinic dehydrogenase dehydrogenase Particulate malic dehydrogenase Succinate + a-ketoSucci nate glutarate 31.6 Succinate + G1utamate 44.8 30. 0 438 464 600 483 nil nil - - 50.4 128 91.7 102 93.3 80. 8 - - 1230 1185 1260 Fumarase Medium 1165 16.5 14. 2 - - 28.2 270 15.0 294 343 75.0 76.0 300 nil nil nil nil NADP M a l i c enzyme 438 524 481 471 NAD M a l i c enzyme 117 141 153 125 Succinyl CoA s y n t h e t a s e NADPH G l u t a m i c dehydrogenase NADH G l u t a m i c dehydrogenase NADP G l u t a m i c dehydrogenase NAD G l u t a m i c dehydrogenase Specific activity 62.0 273 57.0 70.0 53.0 = mymoles o f s u b s t r a t e u t i l i z e d of protein. 163 48. 0 28. 0 p e r m i n p e r mg a - K e t o g l u t a r a t e a n d g l u t a m a t e a d d i t i o n s , when s p e c i f i e d , w e r e a t ; 0.3% level. pseudomonads occurs i s not only e s s e n t i a l f o r e n e r g y p r o d u c t i o n when g r o w t h i n g l u c o s e medium, b u t i s o f s p e c i a l degradation of intermediates of this are growing on such compounds. importance for the c y c l e when t h e o r g a n i s m s Under any c i r c u m s t a n c e s t h e enzymes o f t h e t r i c a r b o x y l i c a c i d c y c l e c a n be c o n s i d e r e d constitutive. Good a c t i v i t y and o f s u c c i n i c dehydrogenase i n both s u c c i n a t e g r o w n c e l l s was o b t a i n e d method used i n the present u s e d by p r e v i o u s w o r k e r s enzyme i r i P. a e r u g i n o s a and Campbell, 1966b). indicating who f o u n d very low a c t i v i t y of this (Campbel 1 e_t a l _ , 1962; Von T i g e r s t r o m The i n f l u e n c e o f t h e k i n d o f a s s a y p o i n t e d o u t by S i n g e r a n d K e a r n y synthetase,which that the i n v e s t i g a t i o n was s u p e r i o r t o t h e o n e u s e d on d e t e c t i n g a d i f f e r e n c e i n a c t i v i t y was glucose has been found of succinic (1963). method dehydrogenase S u c c i n y l CoA t o increase about 8-fold i n E_. c o l j _ g r o w n o n s u c c i n a t e a s c o m p a r e d t o t h e c e l l s grown i n g l u c o s e medium difference ( G i b s o n , Upper and G u n s a l u s , inactivity i n P. a e r u g i n o s a s u c c i n a t e o r g l u c o s e media. 1967), showed little d u r i n g growth i n T h u s , t h i s enzyme d i d n o t seem t o b e regulatory. The b. G l u t a m i c dehydrogenase variation i ntheactivity in d i f f e r e n t growth media activity o f glutamic i s interesting dehydrogenase t o note. T h e enzyme activity i n t h e d i r e c t i o n o f g l u t a m a t e s y n t h e s i s was as g r e a t as the i n the d i r e c t i o n o f o x i d a t i o n . activity was in the d i r e c t i o n with NAD Such 1961; the Leech and plants and Kirk, 1968) and i s ammonia 1968). high a c t i v i t y formation indicates i n c o r p o r a t i o n which o b s e r v a t i o n s made i n o t h e r s y s t e m s Leech found that the presence o f glutamate activity o f t h e enzyme and both d i r e c t i o n s . genase 1968). Kirk, and activity indicate Sanwal and that Lata, i t s primary i s i n agreement w i t h the Rickenberg, s u g g e s t i o n i t was i n t h e medium r e p r e s s e d t h e fell to less Repression of the a c t i v i t y i n g l u t a m a t e medium ha:s b e e n f o u n d a l , 1965) activity o f t h e enzyme i n In s u p p o r t o f t h i s the l e v e l s (H) b e e n shown i n ( V e n d e r , J a y a r a m a n and 1965; and as has S c h n e i d e r , 1957; d i r e c t i o n of glutamate function probably ( H o l z e r and The no i n Rhizobium japonicum than h a l f in of g l u t a m i c dehydro- i n E_. c o l ? (Mooney and (Vender Fottrell, 1968). IX. Level or of Malic Enzyme i n C e l l s Grown i n Succinate, Glucose A c e t a t e Med ? a T h i s enzyme was NADP t h a n w i t h NAD found t o e x h i b i t as t h e c o e n z y m e times r e s u l t s were a l s o r e p o r t e d p r e s e n c e o f two g l u t a m i c d e h y d r o g e n a s e s some f u n g i et NADH g a v e some o f g l u t a m a t e s y n t h e s i s , b u t t h e r e was i n the o p p o s i t e d i r e c t i o n . five A l s o , w i t h NADP high i n both d i r e c t i o n s . i n Ch1oropseudomonas e t h y l i c u m ( S t e r n , the about much h i g h e r a c t i v i t y (Table IX). The levels with were high i n both activity dropped w e r e grown reported "coarse is t h e s u c c i n a t e a n d t h e g l u c o s e grown c e l l s b u t t h e t o a b o u t k0% o f t h i s i n a c e t a t e medium i n P. p u t i d a acid cycle has by acid t o be c a t a l y s e d m a i n l y earlier. indicates o f both that i t s a c t i v i t y When o r g a n i s m s a r e Hence, a c e t y l CoA i n a d d i t i o n succinate. acid In pseudomonads cycle i salso d u r i n g growth t h e s e o r g a n i s m s a r e grown o b t a i n e d by t h e d i r e c t level important level of acetate. similar the further of malic CoA i s T h i s c o u l d be t o t h a t i n E_. c o l i a c t i v i t y has been d e m o n s t r a t e d a e r u g i n o s a g r o w n on v a l i n e t h i o k i n a s e which (Sokacth, 1967); has been r e p o r t e d enzyme H o w e v e r , when by a c e t a t e k i n a s e a n d p h o s p h o t r a n s a c e t y l a s e , phosphotransacetylase enzyme f o r the complete i n a g l u c o s e medium. activation by t h e of this i n a c e t a t e medium, a c e t y l a c h i e v e d e i t h e r by a s y s t e m catalysed i s achieved t h e a c t i v i t y of the. o x i d a t i o n o f g l u c o s e and hence a g a i n a h i g h is maintained This CoA c a n t h e n be d e r i v e d f r o m oxidation o f pyruvate. tricarboxylic t o oxalacetate v i a malate o f m a l i c enzyme a n d t h u s , t h e h i g h Acetyl i t by t h e r e a c t i o n s o f t h i s c y c l e a s the o x i d a t i o n o f succinate t o pyruvate is maintained. This type o f c y c l e member,, e . g . s u c c i n a t e , t o be c o n s t a n t l y d e r i v e d from activity also t h e g l u c o s e and t h e intermediates. grown on a t r i c a r b o x y l i c discussed Such r e s u l t s w e r e e t a l, 1966). (Jacobson i n the metabolism tricarboxylic has (Table X ) . c o n t r o l " on m a l i c enzyme important v a l u e when t h e o r g a n i s m s since i n f_. o r by a c e t i c i n P. f 1 u o r e s c e n s (Kornberg Table X. Effect of carbon sources on the s p e c i f i c a c t i v i t i e s of malic enzyme and i s o c i t r a t e lyase in P_. aeruginosa. Growth Medium Glucose Enzyme NADP Malic enzyme Isocitrate lyase Succinate Acetate speci f i c act i vi ty' 435 24.3 407 11.3 mymoles substrate u t i l i z e d per min per mg of protein 174 450 and Madsen, 1958). necessary Thus, high f o rthe generation of acetyl for maintaining the a c t i v i t y tricarboxylic acid It l e v e l s o f m a l i c enzyme a r e no i s thus variation seen t h a t t h e organisms possess X. to their enzymes. i n the level g r o w t h medium either cycle. according the necessary acids of glyoxylate cycle or of the regulate the flow o f metabolites along metabolism CoA f r o m longer a capacity to s e l e c t e d pathways o f n e e d by a l t e r i n g the synthesis o f The commonly made o b s e r v a t i o n o f t h e g r e a t of isocitrate lyase according to the ( T a b l e X) i s y e t a n o t h e r example t o support this. I t i d u c t i o n o f t h e Enzymes o f G l u c o s e U t i 1 i z a t i o n ' i t i ' C e l l s Harvested To f r o m S u c c i h a t e Med ium determine i n P. a e r u g i n o s a i fthe i n i t i a l a r e induced s u c c i n a t e grown c e l l s , Warburg e x p e r i m e n t s enzymes o f g l u c o s e f o rglucose cell (5 mg d r y w e i g h t / m l ) , suspensions glucose flasks identical M_Tris Each b u f f e r , pH l.k, 10 m l ; s u c c i n a t e g r o w n contained 10 m l ; a n d H^O 15 mg c h l o r a m p h e n i c o l . w e r e s h a k e n a t 30 C f o r 30 m i n a n d t h e n solution t o those f o r w e r e s e t up i n t w o E r l e n m e y e r f l a s k s . 0.1 One o f t h e s e utilization in incubation.mixtures flask contained suspension metabolism (75 u m o l e ) was added t o e a c h f l a s k . f u r t h e r shaken f o r 2 h r a t which time t h e c e l l s were t o 27 ml . These 3.0 ml o f They w e r e harvested, Table X I . I n d u c t i o n o f some enzymes o f g l u c o s e o x i d a t i o n by glucose. Glucose dehydrogenase Source of cells Specific Glucose Glucokinase medium Glucose-6-phosphate dehydrogenase • activity" 32.0 98.7 224.0 S u c c i n a t e medium 1.5 16.4 2.5 C e l I s t r a n s f e r r e d from s u c c i n a t e medium t o g l u c o s e suspension containing c h l o r amphenicol 3.0 13.8 1.0 10.0 23.0 9.0 C e l l s t r a n s f e r r e d from s u c c i n a t e medium t o g l u c o s e s u s p e n s i o n c o n t a i n i n g no chloramphenicol mumoles s u b s t r a t e u t i l i z e d p e r m i n p e r mg o f p r o t e i n . cell e x t r a c t s prepared and assayed f o r glucose-6-phosphate h y d r o g e n a s e , g l u c o s e d e h y d r o g e n a s e and glucokinase. The results ( T a b l e X l ) showed t h a t a l 1 o f t h e s e enzymes w e r e i n d u c e d cells was not suppressed Although when a s h i f t be s e e n by chloramphenicol. are included for The values f o r glucose t h e enzymes o f g l u c o s e m e t a b o l i s m from succinate to glucose i f i t t o o has g l u c o s e has t o be t o be and comparison. i f s u c c i n a t e grown c e l l s glucose or for in the incubated with chloramphenicol, while t h e i r synthesis succinate cells to de- induced i s made, i t s t i l l possess induced. i n d u c e d , how are remained the permease f o r I f the t r a n s p o r t system l o n g does i t t a k e f o r t h e 14 induction? To a n s w e r t h e s e q u e s t i o n s g l u c o s e U - was studied. Firstly, cells and s u c c i n a t e s e r v e d as g r o w n i n g l u c o s e medium w e r e u s e d the energy source Under t h e s e c o n d i t i o n s g l u c o s e uptake about 5 min ( F i g . 17). of i . e . a-CH^-glucoside glucose, the glucose permease system, tried I t was curve interesting and i n these levelled to find C. with that analogues To f u r t h e r see the s p e c i f i c i t y None.of t h e s e sugars competed w i t h I t was a l s o found a-CH^-glucoside E'. c o l i s y s t e m and which retard concentr- of c o m p e t i t i o n w i t h g a l a c t o s e , f r u c t o s e and ( F i g . 18). aerug?hbsa. accumulate o f f at 2-deoxyglucose d i d not i n d i c a t i n g a h i g h l y s p e c i f i c mechanism o f g l u c o s e P. experiments. i n c o r p o r a t i o n , e v e n when a d d e d a t 1 0 0 - f o l d t h e 14 ation of glucose-U- was C transport glucose mannose glucose transport in t h a t g l u c o s e grown c e l l s did not i s i n c o n t r a s t t o the o b s e r v a t i o n i s i n agreement w i t h the f i n d i n g of Hamilton 86 6-Or MINUTES Fig. 17. Uptake of r a d i o a c t i v i t y by glucose grown c e l l s of P . . aerugi nosa with 10'- M glucose-•U- C (0.5yc/ymole) and with 10 M a-methyl-D-glucopyranoside (0.5yc/ymole). Symbols: 0-0 , glucose-U- C; • - • ,_glucose-U- C + 250 mM chloramphenicol; o - o , g l u c p s e - U - ^ C with 10'"* M, 2-deoxygl ucose; • - •, g1ucose-U- ^C with 10"3 M a-methyl-D-glucopyroside, A- A, a-methyl-D-glucopyranoside-UC. 14 1 5 MINUTES Fig. 18. I n c o r p o r a t i o n o f g l u c o s e - U - C i n the presence o r absence o f o t h e r s u g a r s by t h e w h o l e c e l l s o f P. a e r u g i n o s a harvested f r o m t h e g l u c o s e m i n i m a l medium. T h e e x t e r n a l g l u c o s e c o n c e n t r a t i o n was 1 0 ~ M; s p e c i f i c a c t i v i t y , 0 . 5 uc/umole. S y m b o l s : • - • , no a d d i t i o n ; o - o , w i t h 10"- M f r u c t o s e ; • - •, w i t h ,10"3 M g a l a c t o s e ; • - • , w i t h 10~3 M mannose. 1 4 5 5 •8.8.: MINUTES fig. 19. Glucose-UC i n c o r p o r a t i o n by t h e w h o l e c e l I s o f PI a e r u g i h o s a w i l d t y p e and i t s m u t a n t s t r a i n M5, h a r v e s t e d f r o m s u c c i n a t e m i n i m a l medium. E x t e r n a l g l u c o s e c o n c e n t r a t i o n was 1 0 " ^ M; s p e c i f i c a c t i v i t y 0.5 u c / y m o l e . Symbols:A-A, w i l d type c e l l s ; o-o, w i l d t y p e c e l l s w i t h 250 mM c h l o r a m p h e n i c o l ; w i 1 d t y p e c e l 1 s . w i t h 30 mM s o d i u m a z i d e + 1 mM iodoacetamide; • - • , M5 c e l l s . :. '•'•^r::[ •• '' • V ' *• • Dawes ( 1 9 6 0 ) , who made s i m i l a r and P. a e r u g i n o s a . The a b i l i t y observations t o accumulate in their strain of 2-deoxyglucose was not t e s t e d . S i n c e t h e c e l l s grown i n g l u c o s e medium a c t i v e l y g l u c o s e a c r o s s t h e membrane i n t h e s y s t e m the t r a n s p o r t o f glucose i n t h e c e l l s grown was f u r t h e r s t u d i e d w i t h t h i s i t s mutant s t r a i n M 5 . and system T h i s mutant cycle intermediates. presented i n F i g u r e 19. permease i s induced The r e s u l t s The s t u d y study, t y p e P. aerug?nosa» i s unable t o g r o w on b u t does grow on tricarboxylic o f these experiments clearly revealed that are glucose s l o w l y over a long p e r i o d o f time. I t was c o n c l u d e d from t h e a b o v e d a t a t h a t on s h i f t s u c c i n a t e t o g l u c o s e medium b o t h as w e l l in this i n s u c c i n a t e medium in wild glucose, gluconate o r 2-ketogluconate acid used transported the s p e c i f i c glucose from permease a s g l u c o s e o x i d a t i o n enzymes h a v e t o be s y n t h e s i z e d simultaneously i n o r d e r t h a t t h e o r g a n i s m s c a n a d a p t t o g r o w t h on g1ucose. XI. C o n t r o l o f Tr? c a r b o x y l ? c A c i d C y c l e Act? v i t y 1. P a r t i c u l a t e The level of particulate . i n t h e c e l l s grown to determine m a l i c dehydrogenase a c t i v i t y m a l i c d e h y d r o g e n a s e was much i n g l u c o s e medium ( T a b l e the increase i n the level IX). higher The e x p e r i m e n t o f t h i s enzyme on s h i f t t o 90 HOURS F i g . 20. Increase in the level of p a r t i c u l a t e malic dehydrogenase a c t i v i t y on s h i f t to glucose medium. The experimental conditions were the same as in F i g . 16, except f o r the higher rate of shaking at 37 C. Symbols, O , o p t i c a l d e n s i t y ; • , p a r t i c u l a t e malic dehydrogenase a c t i v i t y . glucose medium showed the expected results (Fig. 20). I t was t h e r e f o r e thought d e s i r a b l e t o observe t h e c o n t r o l o f malate oxidase and activity. Substrates like acetate, c i t r a t e , succinate at a concentration activity. o f 3 mM d i d n o t i n f l u e n c e t h e When ATP was a d d e d t o t h e r e a c t i o n m i x t u r e c o n c e n t r a t i o n , a b o u t h a l f o f t h e a c t i v i t y was l o s t This i n h i b i t i o n was n o t c o m p e t i t i v e w i t h addition of higher inhibition. and concentrations Essentially AMP ( T a b l e X I I ) . with similar Cumulative t w o o r more o f t h e s e (Table X I l ) . o f ATP d i d n o t c a u s e a n y f u r t h e r r e s u l t s were o b t a i n e d inhibition o f GTP. o r concerted However, activation The k i n e t i c a n a l y s i s showed Km f o r m a l a t e o f 3.77 x 10 partially W h i l e GDP was a s s t i m u l a t o r y a s Adenosine, i s common t o t h e s t r u c t u r e o f A T P , ADP a n d AMP, was effect. increased reaction mixture GTP; GMP, CTP a n d ITP d i d n o t i n f l u e n c e t h e a c t i v i t y . any inhibition A d d i t i o n o f an e q u i v a l e n t o f ATP a n d GTP i n t h e a s s a y o v e r c a m e t h e ATP i n h i b i t i o n . which w i t h ADP n u c l e o t i d e s was n o t o b s e r v e d . increasing concentrations concentration i n 1 mM the substrate,as the GTP was f o u n d t o a c t i v a t e t h e enzyme a n d t h i s with pyruvate t h a t t h i s enzyme m o l e / l i t e r and t h i s without has a i s increased t o 8.33 x 10 ^ m o l e / l i t e r i n t h e p r e s e n c e o f 1 mM ATP. From t h e L i n e w e a v e r B u r k p l o t i t i s s e e n t h a t ATP i s a " m i x e d " t y p e o f inhibitor, i . e . i ti s neither a competitive i n h i b i t o r o f t h e enzyme a c t i v i t y present these nor a non-competitive ( F i g . 2 1 ) . The r e s u l t s o f t h e i n v e s t i g a t i o n do n o t a l l o w t h e p r e c i s e i n t e r p r e t a t i o n o f observations but such results have been r e p o r t e d w i t h NAD- Table X I I . E f f e c t o f n u c l e o t i d e p h o s p h a t e s on t h e p a r t i c u l a t e d e h y d r o g e n a s e i n 1 0 5 , 0 0 0 x g_ p e l l e t " . . Inn i b i t o r Concent r a t ion (mM) - Specifi c activi ty (mumoles/min/mg - 29?0 0.5 18.4 1.0 15.6 2.0 15.6 3.0 15.6 0.5 15.6 1.0 14.2 2.0 14.2 0.5 17.0 1.0 17.0 2.0 15.6 0.5 34.0 1.0 41.0 2.0 53.0 GDP 1 .0 39.6 GMP 1.0 29.7 ATP+AMP ATP ADP AMP GTP 1.0 a 15.6 ATP+ADP 1.0 8 17.0 ATP+ADP+AMP 1.0 a ATP+GTP i.o CTP 1 .0 29.7 ITP 1.0 28.9 a malic protein) 15.6 22.4 2 x 10 M EDTA was added t o 2 0 , 0 0 0 x g _ . s u p e r n a t a n t b e f o r e c e n t r i f u g a t i o n a t 1 0 5 , 0 0 0 . x g_ f o r 90 min.. The p e l l e t was w a s h e d ;;with 0 . 2 M T r i s b u f f e r , pH 7 . 2 c o n t a i n i n g 1 0 " 3 M EDTA a n d r e s u s p e n d e d i n 0 . 2 M T r i s , pH 7 . 2 . J 'Each n u c l e o t i d e p h o s p h a t e was added a t a c o n c e n t r a t i o n o f 1 mM. -40 0 20 40 [Sl ( mM F i g . 21. 60 80 , 100 MALATE ) Lineweaver-Burk plot for p a r t i c u l a t e malic dehydrogenase in the absence (A) or presence (B) of 1 mM ATP. linked heart particulate i n which assayed ( m i t o c h o n d r i a l ) m a l i c dehydrogenase from p i g A T P , ADP a n d AMP w e r e f o u n d i n the direction from peas i n which o f NADH o x i d a t i o n ; a n d w i t h t h e enzyme t h e i n h i b i t i o n was o b s e r v e d ( K u r a m i t s u , 1966; K u r a m i t s u , 1 9 6 8 ) . by a d e n i n e t o be i n h i b i t o r y when i n both directions This pattern o f i n h i b i t i o n n u c l e o t i d e s was p r e s u m e d t o m i m i c t h e c o n t r o l by y e t a n o t h e r compound regulating t h e enzyme a c t i v i t y . However, i n t h e absence o f a r e g u l a t o r y mechanism f o r i s o c i t r a t e by a d e n i n e dehydrogenase n u c l e o t i d e s i n P. a e r u g i n o s a t h e s i g n i f i c a n c e o f s u c h an observation acid exerted i s very great. i s necessary t o ensure cycle, a control at this Since a constant supply o f o x a l a c e t i c the a c t i v i t y s t e p on m a l a t e of the tricarboxylic oxidase system acid can thus regulate the a c t i v i t y o f the cycle. 2. Control acid The cycle o f the flow of isocitrate c y c l e and g l y o x y l a t e c y c l e inhibitory v i a the t r i c a r b o x y l i c i n P_. a e r u g ? h o s a and r e p r e s s i v e e f f e c t s of tricarboxylic i n t e r m e d i a t e s and p h o s p h o e n o l p y r u v a t e on i s o c i t r a t e of E. c o l i h a v e b e e n r e p o r t e d ( K o r n b e r g , 1 9 6 6 ) . on the control of this R u f f o and c o w o r k e r s acid lyase This type o f study enzyme f r o m pseudomonads h a s n o t b e e n made. (1959, 1962, 1963, 1967) have r e p o r t e d t h a t o x a l m a l a t e , a c o n d e n s a t i o n p r o d u c t o f g l y o x y l a t e and o x a l a c e t a t e , inhibits has mammalian a e o n i t a s e and i s o c i t r a t e been proposed that this dehydrogenase and i t c o n d e n s a t i o n p r o d u c t may be i m p o r t a n t in the r e g u l a t i o n S h i i o and Ozaki (1968) not formed from g l y o x y l a t e and o x a l a c e t a t e conditions. two They reported flavum enzyme when o b t a i n e d It was o f dehydrogenase and r e l a t i v e l y from interest look oxalmalate under p h y s i o l o g i c a l inhibition by t h e s e dehydrogenase lower f o r such i n P. a e r u g i n o s a , s i n c e (Von T i g e r s t r o m a n d C a m p b e l l , also found inhibition study it 1966; that control of Table unlike from of this heart. isocitrate shows a c t i v i t y IX). only with It was the N A D - s p e c i f i c dehydrogenase o f Neurospora and y e a s t (Atkinson, 1966) N A D P - s p e c i f i c enzyme o f P . a e r u g i n o s a was n o t i n f l u e n c e d by AMP, ADP o r A T P . showed that addition study, t h e enzyme isocitrate sulfate Preliminary of glyoxylate grown c e l l s is strongly procedure Malic d e h y d r o g e n a s e a s s a y when isocitrate and r e l a t e d isocitrate Xlll) is lyase a c t i v i t y lyase likely to of different respectively. acetate by ammonium by O z a k i interfere with o f malate T h e P4 f r a c t i o n detailed from as o u t l i n e d the e f f e c t compounds on i s o c i t r a t e for purified d e h y d r o g e n a s e and PS f o r T a b l e X I V a n d XV show t h e e f f e c t cycle (Table extracts by s i m u l t a n e o u s Therefore, partially enzyme w h i c h low i n Pk a n d P5 f r a c t i o n s . assay of the e e l 1-free inhibited and o x a l a c e t a t e . o f P. a e r u g i n o s a were (1968). isocitrate results with d e h y d r o g e n a s e and i s o c i t r a t e fractionation and S h i i o was However, E_. c o l i , B_. s u b t i 1 i s o r p i g to in the present found t h a t isocitrate NADP isocitrate have strong concerted compounds o f NADP s p e c i f i c Brevibacterium the acid cycle activity. recently more is of tricarboxylic is studied, was u s e d f o r t h e isocitrate the lyase. tricarboxylic d e h y d r o g e n a s e and acid 'Table X I I I . P a r t i a l p u r i f i c a t i o n o f i s o c i t r a t e d e h y d r o g e n a s e and i s o c i t r a t e f r o m t h e c e l l e x t r a c t s o f P_. a e r u g i n o s a ; lyase Enzyme (NH^)2^^ZJ Fractionation procedure Fraction Isocitrate Isocitrate T o t a l .dehydrogenase lyase protein —:— —: (mg) sp. a c t . t o t . a c t . s p . a c t . t o t . a c t . ; 105,000 x £ supernatant (A) P r e c i p i t a t e b e t w e e n 0.5 and 0.8 s a t u r a t i o n o f (A) P r e c i p i t a t e f r o m P2 b e t w e e n 0 . 5 5 a n d 0.65 s a t u r a t i o n P5 sp.act. tot.act. 148,300 1090. 184,300 877 68. 1200 82,000 672 45,900 . 31. 2 2140 66,700 880 27,450 37.5 1,170 5.68 3290 18,700 1265 7,180 14.8 .84 6 . 16 3480 21,450 1695 10,450 18.9 116 P1 P4 : 169. 2 P r e c i p i t a t e from.PI between 0.5 a n d 0.6 s a t u r a t i o n P2 P r e c i p i t a t e f r o m P2 a t 0.55 s a t u r a t i o n NADP m a l i c enzyme . 210 14,350 a. Isocitrate dehydrogenase activity The a n a l y s i s o f t h e r e s u l t s showed t h a t dehydrogenase, although extent, i s very concentrations inhibited by a l l t h e compounds t o some s e n s i t i v e t o concerted of glyoxylate plus isocitrate inhibition oxalacetate by l o w (Table X I V ) . When a d d e d s i n g l y , o x a l a c e t a t e c a u s e d some i n h i b i t i o n o f t h e enzyme, but g l y o x y l a t e a c t u a l l y condensation product as o x a l a c e t a t e a c t i v a t e d t h e enzyme. was n o t f o u n d t o be as s t r o n g an and g l y o x y l a t e t o g e t h e r . the assay oxalacetate. i n the reaction mixture This found a t t h e end receiving glyoxylate plus indicated that a condensation f o r m e d a n d t h u s was n o t i m p o r t a n t inhibitor M o r e o v e r , i t was t h a t a l m o s t a l l o f t h e g l y o x y l a t e c o u l d be r e c o v e r e d of The product was n o t i n t h e r e g u l a t i o n o f enzyme activity. The m i x t u r e reaction mixture striking o f t r i c a r b o x y l i c a c i d c y c l e a c i d s added t o t h e i n equimolar concentration inhibition reaction mixture, d i d not cause a b u t i f g l y o x y l a t e (1 mM) was i n c l u d e d the a c t i v i t y i n the dropped s h a r p l y t o almost z e r o a t 1.5 mM c o n c e n t r a t i o n o f t h e m i x t u r e of acids (Fig. 22). Striking i n h i b i t i o n was a l s o o b s e r v e d e v e n when 0.1 mM g l y o x y l a t e was added t o t h e a s s a y mixtures. Lineweaver-Burk p l o t ( F i g . 23) showed t h a t t h e Km.of t h e Table XIV. I n h i b i t i o n o f i s o c i t r a t e d e h y d r o g e n a s e a c t i v i t y by v a r i o u s o r g a n i c a c i d s and r e l a t e d compounds. 0.2 mM D L - i s o c i t r a t e was u s e d i n t h e a s s a y r e a c t i o n m i x t u r e . Additions Concentration % Inhibition * Glyoxylate recovered (mM) Citrate 10 57.7 Cis-aconitate 10 66.7 a-Ketoglutarate 10 60.0 Succinate 10 46.7 Fumarate 10 33.3 Malate 10 35.6 Oxalacetate 10 88.5 Condensation 42.5 "»0.1 11.4 -33.5 10 Glyoxylate Oxalacetate glyoxylate 1.0 1 .0 -16.7 0.1 nil + 10 e a c h product The c o n d e n s a t i o n S h i i o and Ozaki 100 1.0 each 0.1 each 10 100 94.0 91.3 105.0 100 1 .0 77.8 nil 0.1 35.7 nil product (1968). was prepared by t h e m e t h o d o u t l i n e d by 99 O-O 0 n r , 2«0 g 4*0 6*0 CONCENTRATION( mM) Fig. 22. E f f e c t o f a mixture o f t r i c a r b o x y l i c acid c y c l e intermediates on i s o c i t r a t e d e h y d r o g e n a s e a c t i v i t y . Assays were c a r r i e d o u t i n 1.0 ml r e a c t i o n m i x t u r e c o n t a i n i n g 6.8 y g enzyme p r o t e i n and i n d i c a t e d c o n c e n t r a t i o n o f D - i s o c i t r a t e ( o - o ) ; an e q u i m o l a r m i x t u r e o f D - i s o c i t r a t e , c i t r a t e , c i s - a c o n 4 t a t e , a - k e t o g l u t a r a t e , s u c c i n a t e , f u m a r a t e , L-malate and o x a l acetate ( • - • ) . G l y o x y l a t e , 1 mM (• - • ) o r 0.1 mM ( • - • ) was a d d e d t o t h e a s s a y m i x t u r e s c o n t a i n i n g t h e m i x t u r e o f organic acids. 100 IS] ( m M DL-ISOCITRATE ) F i g . 23. Lineweaver-Burk p l o t f o r i s o c i t r a t e dehydrogenase of P. aerug?hosa. 4-' enzyme f o r D - i s o c i t r a t e i s 2.3 b. Isocitrate Succinate competitive Gunsalus, 1957). product which did activity of this The p r e s e n t enzyme i n P. a e r u g i n o s a results i n h i b i t o r n o r was i s known t o be a s t r o n g important included enzyme. inhibitory This 7 acids o f the t r i c a r b o x y l i c a c t i o n o f these the a c t i v i t y with remained the mixture further condensation enzyme f r o m E. pattern of acids mM glyoxylate increasing c o n c e n t r a t i o n , but a c i d c y c l e were a l s o i n equimolar c o n c e n t r a t i o n , the a c i d s was v e r y low. 1.5 coli. i s a l s o seen The a c t i v i t y o f t h e enzyme i n c r e a s e d w i t h i n the r e a c t i o n mixture and phosphoenolpyruvate, inhibitor of this c o n c e n t r a t i o n o f D - i s o c i t r a t e u n t i l about when o t h e r The o b s e r v a t i o n was t h a t o x a l a c e t a t e p l u s not s t r o n g l y i n h i b i t t h i s i n F i g . 2k. (Smith show t h a t s u c c i n a t e was t h e i n h i b i t o r o f a l l t h e compounds t r i e d . was n o t a s t r o n g Another mole/liter, and g l y o x y l a t e p r e v i o u s l y w e r e shown t o be n o n - inhibitors most p o t e n t lyase x 10 I f 0.1 mM s t r o n g o n . t h e enzyme and g l y o x y l a t e was a d d e d i n the reaction mixture, along i t d i d not i n h i b i t the a c t i v i t y . The Km o f t h e enzyme f o r D - i s o c i t r i e . a c i d was f o u n d t o be 2.5 x 10 ^ m o l e s / l i t e r ( F i g . 2 5 ) . lyase f o r D - i s o c i t r i c dehydrogenase. acid Thus, the a f f i n i t y o f i s a b o u t one t e n t h that of isocitrate isocitrate 102 Table XV. I n h i b i t i o n o f i s o c i t r a t e l y a s e a c t i v i t y by o r g a n i c a c i d s and r e l a t e d compounds. - 3.0 mM D L - i s o c i t r a t e was u s e d i n the assay r e a c t i o n mixtures. Additions Concentration .% Inhibition (mM) Citrate 10 13.5 Cis-aconitate 10 42.4 a-Ketoglutarate 10 57.0 Succinate 10 81.0 Fumarate 10 16.0 Malate 10 39.0 Oxalacetate 10 55.0 Glyoxylate Oxalacetate glyoxylate 0.5 40.0 0.1 31.0 plus 0.5 each 32.0 Condensation product o f g l y o x y l a t e and oxalacetate 1.0 16.0 Phosphoenolpyruvate 1.0 5.0 103 l-5p 6 w O E w 0-5 u < o. 1-0 2-0 3-0 CONCENTRATION (mM) F i g . "24. Effect of a mixture of t r i c a r b o x y l i c a c i d c y c l e intermediates on i s o c i t r a t e l y a s e a c t i v i t y . Assays were c a r r i e d o u t i n 2 . 0 ml r e a c t i o n m i x t u r e s c o n t a i n i n g 48 y g o f enzyme p r o t e i n a n d i n d i c a t e d c o n c e n t r a t i o n o f D - i s o c i t r a t e (O) o r a n equimolar mixture of D - i s o c i t r a t e , c i t r a t e , c i s - a c o n i t a t e , a - k e t o g l u t a r a t e , s u c c i n a t e , f u m a r a t e , m a l a t e and o x a l a c e t a t e (•). 0 . 1 mM g l y o x y l a t e was a d d e d t o t h e a s s a y m i x t u r e c o n t a i n i n g t h e m i x t u r e o f o r g a n i c a c i d s , when i n d i c a t e d (•). A f t e r s t o p p i n g t h e r e a c t i o n , t h e m i x t u r e was d i l u t e d t e n times before c o l o r development t o m i n i m i z e t h e i n t e r f e r e n c e due t o t h e a d d e d o r g a n i c a c i d s . .104 c. Aeon i t a s e a c t i v i t y Aconitase with inhibition with condensation be i m p o r t a n t product glyoxylate plus was a l s o t e s t e d t o s e e i f t h i s i n the regulation of t r i c a r b o x y l i c activity. This inhibition by t h e c o n d e n s a t i o n enzyme was f o u n d t o be v e r y product physiological and XVI). The p l u s g l y o x y l a t e was i t was c o n c l u d e d that this could acid cycle i s not formed c o n d i t i o n s and i s u n i m p o r t a n t . with oxalacetate and sensitive to (Table shown p r e v i o u s l y t h e c o n d e n s e d p r o d u c t inhibition oxalacetate However, as under concerted not so pronounced on aconitase enzyme in the r e g u l a t i o n o f the a c t i v i t y of t r i c a r b o x y l i c i s not important a c i d and glyoxylate cycle. Interpretation of this isocitrate study l y a s e and a c o n i t a s e on i s o c i t r a t e activity a pattern of control of tricarboxylic cycle which At is similar low l e v e l s isocitrate order formed lyase i s induced isocitrate the carbon source. i n a c e t a t e medium of i s o c i t r a t e dehydrogenase a c t i v i t y flavum. the glyoxylate c y c l e in g r o w on t h i s The g l y o x y l a t e f o r m e d a s a r e s u l t inhibits i n Brevibacterium acid cycle intermediates by g r o w t h brings out a c i d c y c l e and g l y o x y l a t e f r o m a c e t a t e must e n t e r t h a t the organisms could isocitrate i n P. a e r u g i n o s a to that described of tricarboxylic dehydrogenase, lyase The (Table X ) . activity, concertedly with oxal- 106 Table XVI. Aconitase inhibition P_. a e r u g i n o s a . Add! t i o n s Concentration; Oxalacetic acid Glyoxylic in cell-free extract acid Oxalacetate glyoxylate Condensat ion product % Inhibi t ion 0.1 17-5 1.0 30.0 0.1 14.0 1.0 30.0 p i us 0.1 of each 14.0 1 .0 e a c h 41.8 0.1 100 1 .0 100 acetic acid. present i n the c e l l . activity cycle, Small amounts o f o x a l a c e t a t e are presumably always However, even when i s o c i t r a t e i s weak, some i s o c i t r a t e e n t e r s the t r i c a r b o x y l i c a c i d because o f the high a f f i n i t y o f this substrate, dehydrogenase isocitrate dehydrogenase f o r thus e n s u r i n g a supply of a - k e t o g l u t a r a t e . When l a r g e amounts of o r g a n i c a c i d s have accumulated due to the high a c t i v i t y o f the g l y o x y l a t e c y c l e o r when these t r i c a r b o x y l i c a c i d c y c l e members serve as the carbon source suppress the a c t i v i t y o f they do the This isocitrate results isocitrate isocitrate i n the medium, they l y a s e more e f f e c t i v e l y than dehydrogenase a c t i v i t y (Figs. 22 and 2k). i n a lowering of g l y o x y l ' a t e p r o d u c t i o n and thus dehydrogenase is r e l e a s e d from the inhibition. complete t r i c a r b o x y l i c a c i d c y c l e now f u n c t i o n s and the glyoxylate cycle a c t i v i t y remains s u p p r e s s e d . The GENERAL DISCUSSION Pseudomonas utilizes a e r u g i nosa like o t h e r members a w i d e v a r i e t y o f compounds disadvantage to the c e l l degradation of this f o r growth. to maintain at a l l large for the synthesis towards Thus, the of e s s e n t i a l the synthesis are o t h e r enzymes, cell at of c e r t a i n enzymes, advantage its Sharp, neighbours enzymes diverted However, little levels o f enzyme has gives there are independent induction a t t e n t i o n has It necessary been been proposed inducible (Pardee and B e c k w i t h , 1963; reports of this that i n v e s t i g a t i o n are i n P. a e r u g i n o s a that it a selectional which possess counter- Moses and i n agreement t h e enzymes of with glucose has given i.e. 1968). The r e s u l t s other synthesize to c o n t r o l the s y n t h e s i s , constitutivity o f such enzymes. o f c o n s t i t u t i v e enzymes. i n a b i l i t y o f an o r g a n i s m parts m a t e r i a l are not r e l a t i v e l y constant been e x t e n s i v e l y s t u d i e d but v e r y over inductively The phenomenon for and h e n c e b a c t e r i a i . e . the c o n s t i t u t i v e enzymes, which of n u t r i t i o n a l c o n d i t i o n s . the t h e enzymes i n t e r m e d i a t e compounds of unnecessary p r o d u c e d by t h e o r g a n i s m to the study I t w o u l d be a times number o f compounds h a v e d e v e l o p e d a s y s t e m by w h i c h t h e y c a n enzymes when r e q u i r e d . o f t h e genus Pseudomonas . the oxidation are inducible while those of the t r i c a r b o x y l i c a c i d cycle are c o n s t i t u t i v e (Von Tigerstrom and Campbell, 1 9 6 6 ; Ng and Dawes, 1 9 6 7 ) . Lack of phosphofructokinase a c t i v i t y has been found to be the reason f o r a non-functional Embden-Meyerhof pathway in t h i s organism. When the c e l l s were grown in succinate medium,.the enzymes of glucose oxidation were e i t h e r at a low level or were absent. Repression of these enzymes, i . e . the enzymes of the Entner-Doudoroff pathway and the o x i d a t i v e portion of the pentose phosphate pathway is a very important regulatory mechanism a v a i l a b l e to the c e l l when the organisms are grown on any t r i c a r b o x y l i c acid cycle intermediate. Under these conditions s u f f i c i e n t energy is a v a i l a b l e from the t r i c a r b o x y l i c acid cycle and t h e r e f o r e , the breakdown of glucose and related compounds which are synthesized in l i m i t e d q u a n t i t i e s by the reversal of Embden-Meyerhof pathway reactions and are required for biosynthesis of s t r u c t u r a l components, is stopped. P. aeruginosa does not accumulate any s p e c i a l storage product which could serve as a readily a v a i l a b l e source of hexose (MacKelvie, Campbell and Gronlund, 1968) and hence i t w i l l be a disadvantage for the organism to c a t a b o l i z e a l 1 of the a v a i l a b l e hexoses in the c e l l . It has been reported that at low concentrations of g1ucose-6-phosphate, ATP strongly i n h i b i t e d the glucose-6-phosphate dehydrogenase of P. aeruginosa, while at high concentrations of t h i s substrate the i n h i b i t i o n was i n s i g n i f i c a n t (Lessie and Neidhardt, 1 9 6 7 a ) . These o b s e r v a t i o n s context rationalized in.this o f t h i s enzyme, present g r o w n i n s u c c i n a t e medium, may d e p l e t e t h e low o f g l u c o s e - 6 - p h o s p h a t e w h i c h may be d e r i v e d Thus, strong from succinate. i n h i b i t i o n o f g 1 u c o s e - 6 - p h o s p h a t e d e h y d r o g e n a s e by a t low l e v e l s o f g 1 u c o s e - 6 - p h o s p h a t e e n s u r e s t h e s u p p l y o f ATP this compound f o r c e l l u l a r b i o s y n t h e s i s . is present ATP be m e a n i n g f u l l y s i n c e even a minor a c t i v i t y in the c e l l s levels could i n excess inhibition f o r example d u r i n g growth i s released o x i d i z e t h e compound w i t h The species. medium, to facility. repression o f the synthesis o f glucose intermediates Baci1lus i n glucose and t h e enzyme i s p e r m i t t e d i n P_. a e r u g ? h o s a upon g r o w t h cycle glucose-6-phosphate When i n medium w i t h o x i d a t i o n enzymes tricarboxylic i s i n contrast t o the observations In one r e p o r t w h e r e t h e s t u d y acid made w i t h on t h e r e g u l a t i o n of g1ucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrog e n a s e a n d h e x o k i n a s e was c a r r i e d o u t w i t h found t h a t t h e l e v e l s o f these B. s u b t i 1 i s , t h r e e enzymes i n c e l l s s u c c i n a t e o r g l u t a m a t e medium d i d n o t d e c r e a s e . c e l l s were capable to those o f c e l l s As of metabolizing glucose grown i n a g l u c o s e a matter o f fact t h e o r g a n i s m s grown showed more t h a n t h r e e t i m e s t h a n o r g a n i s m s grown medium i t was g r o w n on Therefore, at rates these comparable (Moses a n d S h a r p , i n a succinate 1968). medium the rate o f synthesis o f hexokinase i n a glucose medium. vto w h a t w o u l d be p r e d i c t e d s i n c e g l u c o s e This i s contrary w o u l d be e x p e c t e d t o be the inducer o f t h e enzyme. No e x p l a n a t i o n was o f f e r e d b e h a v i o u r o f a s e e m i n g l y c o n s t i t u t i v e enzyme. f o r this Particulate malic d e h y d r o g e n a s e o f P. a e r u g i n o s a h a s b e e n f o u n d t o b e h a v e in that i t showed rather than (Table higher i n the presence o f a l i k e l y IX, F i g . 20). were n o t c o n c l u s i v e , enzymes rates o f synthesis Although inducer, that glucose a r e c o n s t i t u t i v e i n B. s u b t i 1 i s . aerogenes c e l l s glucose without/a grown namely in this succinate and Sharp metabolizing A l t h o u g h no s u c h h a s b e e n made on g l u c o s e o x i d a t i o n enzymes appear t o resemble b a c i l l i i n g l u c o s e medium t h e r e s u l t s o f Moses i t appeared similarly, in coliforms, c o n t r o l mechanism study they s i n c e A_. i i i c i t r a t e medium h a v e b e e n shown t o o x i d i z e l a g ( D a g l e y and Dawes, 1 9 5 3 ) . Indeed, glucokinase has b e e n c o n c l u d e d t o be a c o n s t i t u t i v e enzyme i i i A. a e r o g e n e s (Kamel, A l l i s o n The Horecker and A n d e r s o n , 1966). r e s u l t s presented here a l s o support the suggestion (1965) that i n most instances of t h e p e n t o s e phosphate pathway does n o t f u n c t i o n as a c y c l e , b u t r a t h e r as two mechanisms f o r cellular biosynthesis. The o x i d a t i v e p o r t i o n o f t h e p a t h w a y o p e r a t e s when NADPH i s r e q u i r e d transformations It v while non-oxidative a r e u t i l i z e d when p e n t o s e p h o s p h a t e s a r e r e q u i r e d . i s o n l y when t h e r e q u i r e m e n t o f t h e c e l l requirement to by t h e c e l l f o rthe pentose phosphates that f o r NADPH e x c e e d s i t s i t o p e r a t e s as a c y c l e return excess pentose phosphates t o the metabolic carbohydrates. I t would appear, t h e r e f o r e , that pool o f t h e demand f o r NADPH o f t h e c e l l s by the reactions o f the pentose phosphate c y c l e does n o t o p e r a t e . pentose synthesis low during growth F o r t h e same r e a s o n s , i n the c e l l s i n pseudomonads. that i n succinate grown This finding medium t h e demand f o r reaction ( D e L e y , 1960; indicates pentose b e t w e e n compounds from t r i c a r b o x y l i c a c i d c y c l e i s i n agreement w i t h other workers its contribution to The a n a l y s i s o f t h e r e s u l t s a l s o i n succinate be d e r i v e d i s unnecessary i n g l u c o s e medium may a l s o be p h o s p h a t e must be met by t h e t r a n s k e t o l a s e which could medium i s met o f t h e t r i c a r b o x y l i c a c i d c y c l e and hence, t h e oxidative portions and o f P. a e r u g i n o s a grown intermediates. t h e p r o p o s a l s made by s e v e r a l S a b l e , 1966; Lessie and N e i d h a r d t , 1967a). F a c u l t a t i v e b a c t e r i a a n d some s p e c i e s forming b a c i l l i the of aerobic w h i c h c a n l i v e a n d grow w i t h o u t t r i c a r b o x y l i c acid cycle found t o show a s t r i k i n g cycle (Col spore the a c t i v i t y of under c e r t a i n c o n d i t i o n s h a v e been g l u c o s e e f f e c t on t h e enzymes o f t h i s 1 i n s a n d L a s c e l l e s , 1962; G r a y e _ t a l _ , 1966b; Hanson e t al_, 1963a; 1963b; 1964; Hanson a n d C o x , 1967). the g l u c o s e e f f e c t on t h e t r i c a r b o x y l i c a c i d c y c l e e n z y m e s i s not seen cycle i n P. a e r u g i n o s a , i n d i c a t i n g that i s e s s e n t i a l f o r g r o w t h on g l u c o s e . On t h e o t h e r the a c t i v i t y hand, of this The a d d i t i o n o f g l u t a m a t e a n d a - k e t o g l u t a r a t e t o t h e g r o w t h medium d i d n o t r e p r e s s the synthesis leading o f t h e enzymes o f t h e t r i c a r b o x y l i c a c i d to a-ketoglutarate synthesis. < cycle, In a d d i t i o n , g r o w t h in a succinate medium oxidation as acid and cycle repressed already fulfils therefore, Succinate effectively i s of than 1967b). been to shown (Rosenfeld possess a coli and and A. two in has various again that the groups of oxidation both cycle as the and importance shown the the biosynthetic to these aeruginosa acidovorans induction 1969). of of to to which bacteria. they are possess sole complete lead to pathways difference cycle recently oxygenase rise to succinate, repression more o f required. of which activity, catabolite active source and i n pseudomonads, exert not more has tryptophan give needs (Lessie succinate Thus, appears absence of degradative suggest -glucose P. since the been The and metabolic glucose the t r i c a r b o x y l i c i n P. activities glucose even glucose Thus, glucose aerogenes which utilize enzymes o f hist idine degradation Feigelson, this of repress In intermediates growth on of enzymes,the cycle above. constitutive tricarboxylic acid component on to prevent and major special does Neidhardt, synthesis discussed the i s known the the Whereas in Embden-Meyerhof carbon and effective catabolite (Magasanik, in metabolic 1961). control pathways energy tricarboxylic acid E_. for cycle, repression These facts pattern in the organisms. study i n P. of the induction aeruginosa induction permease were of of grown glucose responsible the systems in succinate metabolizing for the long for medium enzymes lag glucose transport suggested and periods the required before utilization. cells The f i n d i n g t h a t g j u c o s e in t h i s organism permease which d e v e l o p e d an a c t i v e s y s t e m f o r g l u c o s e i s unique s i n c e permease i s i n d u c i b l e i n E. c O l i i s also responsible f o r glucose shown t o be c o n s t i t u t i v e (Cohen and Monod, Many o r g a n i s m s , a-methyl-glucoside i n c l u d i n g animals u p t a k e h a s been 1957). and p l a n t s , p o s s e s s b o t h a particulate mitochondrial and a s o l u b l e c y t o p l a s m i c dehydrogenase. i t h a s b e e n shown t h a t t h e s o l u b l e malic dehydrogenase, which acetate, i s repressed necessary by g r o w t h the m i t o c h o n d r i a l i s required by g l u c o s e f o rcatabolism influenced has In y e a s t , f o rgluconeogenesis the mitochondrial from enzyme v i a the tricarboxylic acid cycle i n a glucose medium (Hoizer, 1966). enzyme o f p i g h e a r t , p e a s and o t h e r i s not It is plants that b e e n shown t o be i n f l u e n c e d b y a d e n i n e n u c l e o t i d e s w h i l e t h e s o l u b l e enzyme i s u n a f f e c t e d the while malic particulate malic the m i t o c h o n d r i a l (Kuramitsu, 1966; 1968). d e h y d r o g e n a s e o f P. a e r u g i n o s a enzyme o f h i g h e r organisms Therefore, resembles in i t s control pattern. I t h a s b e e n f o u n d t h a t t h e i s o c i t r a t e d e h y d r o g e n a s e o f P_. aeruginosa Glutamic formation i s NADP s p e c i f i c a n d shows no a c t i v i t y w i t h dehydrogenase i n t h e d i r e c t i o n o f a-ketog 1 u t a r a t e shows a c t i v i t y coenzyme u t i l i z e d NAD. only with NADP a n d NADPH i s t h e m a j o r i n the d i r e c t i o n o f glutamate synthesis. M a l i c d e h y d r o g e n a s e i s p a r t i c u l a t e and h a s e l i m i n a t e d t h e need f o r f r e e NAD, r e q u i r e d by o t h e r bacteria at this step. Therefore, although not this organism relies on NADPH f o r a n a b o l i c r e a c t i o n s , i t does r e l y on f r e e NAD f o r many c a t a b o l i c r e a c t i o n s . w h e r e t h e o r g a n i s m o b v i o u s l y n e e d s NAD a r e p y r u v a t e and steps dehydrogenase a - k e t o g l u t a r a t e dehydrogenase c a t a l y z e d r e a c t i o n s where this coenzyme i s c a r r i e d possesses and The o n l y a s apoenzyme i n a c o m p l e x . P_. a e r u g i n o s a ( E a g o n , 1 9 6 3 ; Von T i g e r s t r o m a c t i v e transhydrogeriase Campbell, 1966b). Other a e r o b i c organisms possessing trans- h y d r o g e n a s e , e . g . P. f 1 u o r e s c e n s a n d A. v i he1 a r i d i i a r e known t o p o s s e s s o n l y NADP l i n k e d isocitrate T h u s , t h e r e seems t o be a g e n e r a l possessing on energy generation transhydrogenase roles oxidized (Horecker, Although proposal NADPH t h r o u g h t h e agrees w i t h the postulated 1965; Kaplan, 1963). i s not r e a d i l y available for biosynthetic Pseudomonads a r e known c a p a c i t y o f b i o s y n t h e s i s a n d i t i s an a d v a n t a g e t o o f NADPH r a t h e r t h a n rapidly oxidizable purpose. P_. a e r u g i n o s a carboxyl ic acid -exerted This from excess oxygen and i s thus t o produce a pool NADH f o r t h i s dependent r e a c t i o n s a n d NADH f o r t h e p u r p o s e o f o f h i g h e n e r g y p h o s p h a t e a n d o f NADPH w h i c h t h e i r great the c e l l are less organisms i s r a p i d l y o x i d i z e d by t h e o x y g e n w i t h t h e by m o l e c u l a r reactions for reaction. ( K a p l a n , T'963)'. i n the aerobic i n that they c o u l d be d e r i v e d o f NADH w h i c h formation pattern a c t i v e transhydrogenase f r e e NAD f o r t h e m e t a b o l i c dehydrogenase a p p e a r s t o have c o n s t i t u t i v e cycle activity, by m e t a b o l i t e s tri- t h e c o n t r o l on k e y s t e p s i s t o r e g u l a t e t h e f l o w o f compounds through the by cycle. P a r t i c u l a t e malic adenine nucleotides m e c h a n i s m by w h i c h t h e and dehydrogenase which activated cell could by GTP control and the is inhibited GDP provides t r i c a r b o x y l i c acid cycle activity. S i m i l a r l y , i s o c i t r a t e d e h y d r o g e n a s e and lyase activities are acid c y c l e and the c o n t r o l l e d by glyoxylate cycle compounds t h r o u g h t h e s e c y c l e s manner, but needs o f The cycle is regulated the does not a way proceed fashion that in a the flow of haphazard to best s u i t the organism. activity bacteria isocitrate members o f t h e t r i c a r b o x y l i c in;such in a precise lack'of .similarities b e t w e e n P. the a and the activity a e r u g i n o s a and suggests that control of t r i c a r b o x y l i c acid of glucose oxidation e n t e r i c and during o r g a n i s m s have d e v e l o p e d mechanisms s u i t i n g the i n the the aerobic spore enzymes forming process of evolution c h a r a c t e r i s t i c m e t a b o l i c and environment which they the control found themselves in. BIBLIOGRAPHY A d e l b e r g , E.A., Mandel , M. a n d C h e n , G .C .C. 1 9 6 5 . Optimal c o n d i t i o n s f o r m u t a g e n e s i s by N - m e t h y 1 - N - n i t r o - N - n i t r o s o g u a n i d i ne ?n E s c h e r i ch i a c o l i K l 2 . B i o c h e m . B i o p h y s . R e s . Commun. : J_8_: 7 8 8 - 7 9 5 . 1 A j 1, S . J . 1950. A c e t i c a c i d o x i d a t i o n by E s c h e r ? ch i a c o l ? a n d Aerobacter aerogenes. J . B a c t e r i o l . 59: 499-507. A j 1, 1951. S t u d i e s on t h e m e c h a n i s m o f a c e t a t e o x i d a t i o n i n bacteria. ^ . E v i d e n c e f o rthe p a r t i c i p a t i o n o f fumarate, m a l a t e , and o x a l a c e t a t e i n t h e o x i d a t i o n o f a c e t i c a c i d by E s c h e r i c h i a c o l ? . J . G e n . P h y s i o l . 3 4 : 7 8 5 ~ 7 9 4 . S.J; A m a r s i n g h a m , C R . a n d D a v i s , B.D. 1 9 6 5 . Regulation of a-ketog l u t a r a t e dehydrogenase formation i h E s c h e r i c h i a c b l i . J . B i o l . Chem. 2 4 0 : 3 6 6 4 - 3 6 6 8 . Axel rod, B. a n d J a n g , R. 1 9 5 4 . P u r i f i c a t i o n and p r o p e r t i e s o f p h o s p h o r i b o i s o m e r a s e from a l f a l f a . J . B i o l . Chem. 209:- 847-855. B a r r e t t , J . T . , L a r s o n , A.D. a n d K a l l i o , R.E. 1 9 5 3 . The n a t u r e o f t h e a d a p t i v e l a g o f Pseudomonas f l u o r e s c e n s t o w a r d c i t r a t e . J . B a c t e r i o l . 65: 187-192. B a u c h o p , T. a n d E l s d e n , S.R. i960. The g r o w t h o f m i c r o o r g a n i s m s in r e l a t i o n t o t h e i r energy supply. J . Gen. M i c r o b i o l . 23: 457-469. B e n z i m a n , M. a n d G a l a n t e r , Y. 1 9 6 4 . Flavine adenine d i n u c l e o t i d e l i n k e d m a l i c dehydrogenase from A c e t o b a c t e r x y l i r i u n u J . B a c t e r i o l . 88_: 1 0 1 0 - 1 0 1 8 . Bergey's Manual o f D e t e r m i n a t i v e B a c t e r i o l o g y . 1957. E d ? t e d by R.S. B r e e d , E.G.D. M u r r a y and N. S m i t h . W i l l i a m s a n d W i l k i n s Co., . B a l t i m o r e . B o c k , A. and N e i d h a r d t , F.C. 1 9 6 6 . I s o l a t i o n o f a mutant o f Escherichia c b l i with a temperature s e n s i t i v e f r u c t o s e 1,6-di phosphate a l d o l a s e act i v i t y . J . B a c t e r i o l . 92: 464-469. ~~ Brady, R . J . a n d C h a m b l i s s , G.H. 1 9 6 7 . The l a c k o f p h o s p h o f r u c t o ki nase a c t i v i t y i n s e v e r a l s p e c i e s o f R h o d o t o r u l a . B i ochem. B i o p h y s . . R e s . Commun. 2 9 : 343-348. Britten, R . J . a n d M c C l u r e , F.T. 1 9 6 2 . The a m i n o a c i d p o o l i n E s c h e r i c h i a c o l ? . B a c t e r i o l . Rev. 2 9 _ : 2 9 2 - 3 3 5 - Campbell, J . J . R . , Hogg, L.A. a n d S t r a s d i n e , G.A. d i s t r i b u t i o n i h Pseudomonas a e r u g i n o s a . 83: 1155-1160. 1 9 6 2 . Enzyme J . Bacteriol. Campbell, J . J . R . , L i n n e s A.G. and E a g l e s , B.A. 1 9 5 4 . G r o w t h o f Pseudomonas a e r u g i n o s a w i t h g l u c o s e , g l u c o n a t e o r 2 - k e t o g l uconate as carbon s o u r c e . T r a n s . Roy. S o c . C a n . 48: 49-50. Campbell, J . J . R . a n d N o r r i s , F.C. 1 9 5 0 . The i n t e r m e d i a t e m e t a b o l i s m o f Pseudomonas a e r u g i n o s a . I V . The a b s e n c e o f an EmbdenM e y e r h o f s y s t e m a s e v i d e n c e d by p h o s p h o r u s d i s t r i b u t i o n . Can. J . R e s . C. 28: 2 0 3 - 2 1 2 . C a m p b a l 1 , J . J . R . , R a m a k r i s h n a n , T., L i n n e s , A.G. and E a g l e s , B.A. 1956. E v a l u a t i o n o f t h e e n e r g y g a i n e d by Pseudbmonas aeruginosa during the o x i d a t i o n o f glucose t o 2-ketogluconate. C a n . J . M i c r o b i o l . 2: 304-309. Campbell, J . J . R . a n d S m i t h , R.A. 1 9 5 6 . The e n z y m e s o f t h e t r i c a r b o x y l i c a c i d c y c l e o f Pseudbmonas a e r u g i n o s a . C a n . J. Microbiol. 2 : 4 3 3 - 4 4 0 . Campbell, J . J . R . , S m i t h , R.A. a n d E a g l e s , B.A. 1 9 5 3 - A d e v i a t i o n from t h e c o n v e n t i o n a l t r i c a r b o x y l i c a c i d c y c l e i n Pseudomonas a e r u g i n o s a . Biochim. Biophys. Acta 11_: 5 9 4 . Campbell, J . J . R . a n d S t o k e s , F.N. 1 9 5 1 . T r i c a r b o x y l i c a c i d c y c l e i h Pseudomonas ae r u g i n o s a . J . B i o l . Chem. 1 9 0 . : 8 5 3 - 8 5 8 . Cahill, C.F. J r . , H a s t i n g s , A.B., A s h m o r e , J . a n d J o t t u , S. 1 9 5 8 . S t u d i e s on t h e c a r b o h y d r a t e m e t a b o l i s m i n r a t l i v e r slices. X_. F a c t o r s i n t h e r e g u l a t i o n o f p a t h w a y o f glucose metabolism. J . B i o l . Chem. 2 3 0 : 1 2 5 - 1 3 5 . C a l l e l y , A.G. a n d F u l l e r , R.C. 1 9 6 7 - C a r b o x y l i c a c i d c y c l e enzymes in Chloropseudomohas e t h y l i c u m . Biochem. J . 1 0 3 : 74P. 119 Cho, H.W. a n d E a g o n , R.G. 1967. F a c t o r s a f f e c t i n g t h e p a t h w a y s o f g l u c o s e c a t a b o l i s m and t h e t r i c a r b o x y l i c a c i d c y c l e i n Pseudomonas h i t r i e g e n s ; J . B a c t e r i o l . 93: 866-873« C o h e n , G.N. a n d Monod, J . 1957. Rev. 21_: 169-194. Collins, F.M. a n d L a s c e l l e s , J . c o n d i t i o n s on o x i d a t i v e Staphylococcus aureus. Bacterial permeases. Bacteriol.. 1962. The e f f e c t o f g r o w t h and dehydrogenase a c t i v i t y i n J . G e n . M i c r o b i o l . 29_: 531-535. D a g l e y , S. a n d Dawes, E.A. 1953. C i t r i c a c i d m e t a b o l i s m o f Aerobacter aerogenes. J . B a c t e r i o l . 66_: 259-265. Davis, B.D. 1961. The t e l e o n o m i c s i g n i f i c a n c e o f b i o s y n t h e t i c control mechanisms. C o l d S p r i n g H a r b o r Symp. Q u a n t . B i o l . 2 9 _ : 1-10. D e L e y , J . 1960. C o m p a r a t i v e c a r b o h y d r a t e m e t a b o l i s m a n d l o c a l i z a t i o n o f e n z y m e s i h Pseudorhohas a n d r e l a t e d m i c r o o r g a n i s m s . J. A p p l . B a c t . 23_: 400-441 . DeMoss, R.D., B a r d , R.C. a n d G u n s a l u s , I . C . 1951. T h e m e c h a n i s m o f the h e t e r o l a c t i c f e r m e n t a t i o n : a new r o u t e o f e t h a n o l formation. J . B a c t e r i o l . 62: 499-511 . DeVries, Dixon, W. , G e r b r a n d y , S . J . a n d S t o u t h a m e r , A.H. 1967. C a r b o h y d r a t e m e t a b o l i s m ?ri' B ? f i d b b a c t e r ? um b i f ? dum. Biochim. Biophys. A c t a J36_: 415-4~2T G.H. a n d K o r n b e r g , H.L. 1956. A s s a y m e t h o d s f o r k e y enzymes of t h e g l y o x y l a t e c y c l e . B i o c h e m . J . 72: 3P. D o l i n , M . I . 1961. C y t o c h r o m e i n d e p e n d e n t e l e c t r o n t r a n s p o r t enzymes o f b a c t e r i a . _l_n_ T h e b a c t e r i a , V o l . 2. Ed i t e d by I .C. G u n s a l us and R.Y. S t a n i e r . A c a d e m i c P r e s s , I n c . , New Y o r k , p p . 425-460. E a g o n , R.G. 1962. P y r i d i n e n u c l e o t i d e - 1 i n k e d r e a c t i o n s pf nitriegens. J . B a c t e r i o l . 8 4 : 819-821. x Pseudomonas E a g o n , R.G. 1963. R a t e l i m i t i n g e f f e c t s o f p y r i d i n e n u c l e o t i d e s on c a r b o h y d r a t e c a t a b o l i c pathways o f m i c r o o r g a n i s m s . Biochem. B i o p h y s . R e s . Commun. 12: 274-279. E a g o n , R.G. a n d Wang, C.H. 1962. D i s s i m i l a t i o n o f g l u c o s e a n d g l u c o n i c a c i d by P. n i t r i e g e n s . J . B a c t e r i o l . 83: 879-886. 4 E i s e n b e r g , R.C. a n d D o b r o g b s z , W.J. 1967. G 1 u c o n a t e m e t a b o l i s m i n >• E s c h e r i c h i a c b l ?. J . B a c t e r i o l . 93-' 941-949. E p p s , H.M.R. and G a l e , E . F . 1 9 4 2 . T h e i n f l u e n c e o f t h e p r e s e n c e o f g l u c o s e d u r i n g growth on t h e enzymic a c t i v i t i e s o f E s c h e r i ch i a c b l i : C o m p a r i s o n o f t h e e f f e c t w i t h t h a t produced by f e r m e n t a t i v e a c i d s . Biochem. J . 36: 619-623. Fossitt, D.D. a n d B e r n s t e i n , I.A. 1 9 6 3 . B i o s y n t h e s i s and d e o x y r i b o s e i n Pseudomonas s a c c h a r o p h i l a . 86: 1326-1331. o f ribose J .Bacteriol. F r a m p t o n , E.W. a n d Wood, W.A. 1961• C a r b o h y d r a t e o x i d a t i o n by Pseudomonas f l u o r e s c e n s . 'VI-. C o n v e r s i o n o f 2 - k e t o - 6 phosphogluconate t o pyruvate. J . B i o l . Chem. 2 3 6 : . 2571-2577. F r a n c i s , M . J . 0 . , ' H u g h e s , D.E., K o r n b e r g , H.L. a n d P h i z a c k e r l e y , 1963. T h e o x i d a t i o n o f L - m a l a t e b y Pseudomonas s p . Biochem. J . 89: 430-438. F u l l e r , R.C. a n d K o r n b e r g , H.L. 1 9 6 1 . A p o s s i b l e r o u t e o x i d a t i o n b y C h r o m a t i um. B i o c h e m . - J .'79/ 8P-. P.J.R. f o r malate G a l e , N.L. a n d B e c k , J . V . 1 9 6 7 . E v i d e n c e f o r t h e C a l v i n c y c l e a n d hexose monophosphate pathway i h T h i o b a c i 1 l u s ferrboxidansi J . B a c t e r i o l . 9_4: 1 0 5 2 - 1 0 5 9 . G i b s o n , J . , U p p e r , C D . a n d G u n s a l u s , I.C. 1 9 6 7 . S u c c i n y l c o e n z y m e A s y n t h e t a s e o f E s c h e r i c h i a c b l ? . J_. P u r i f i c a t i o n a n d properties. J . B i o l . Chem. 242: 2 4 7 4 - 2 4 7 7 . G o t t s c h a l k , G. a n d B a r k e r , H.A. 1 9 6 7 . P r e s e n c e a n d s t e r e o s p e c i f i c i t y o f c i t r a t e synthase i n anaerobic b a c t e r i a . Biochemistry 6 / 1027-1033. G r a y , C.T., Wimpenny, J.W.T., H u g h e s , D.E. -and M o s s m a n , M.E. 1 9 6 6 a . R e g u l a t i o n o f m e t a b o l i s m i n f a c u l t a t i v e b a c t e r i a . J_. S t r u c t u r a l and f u n c t i o n a l changes i n E s c h e r i c h i a c o l i a s s o c i a t e d w i t h s h i f t s b e t w e e n t h e a e r o b i c and a n a e r o b i c states. Biochim. B i o p h y s . A c t a 117: 22-32. G r a y , C.T., Wimpenny, J.W.T. a n d Mossman, M.E. 1 9 6 6 b . Regulation o f metabolism i n f a c u l t a t i v e b a c t e r i a . II. Effects of a e r o b i o s i s , a n a e r o b i o s i s , a n d n u t r i t i o n on t h e f o r m a t i o n o f K r e b s c y c l e enzymes i n E s c h e r i c h i a c b l ? . Biochim. B i o p h y s . A c t a 117= 33"41. Gunsalus, I . C . and G i b b s , M. 1952. The h e t e r o l a c t i c f e r m e n t a t i o n . I I . P o s i t i o n o f T^c i n the products o f glucose d i s s i m i l a t i o n by Leuconostoc meseriteroides. J . B i o l . Chem. ' 194: 871-875. H a m i l t o n , W.A. and Dawes, E . A . 1960. The nature o f d i a u x i c e f f e c t w i t h glucose and o r g a n i c a c i d s i h Pseudomonas aerug?hbsa. Biochem. J . 7_6_: 7 0 P . Hanson, R . S . , B l i c h a r s k a , J . , . A r n a u d , M. and S j u l m a j s t e r , S. 1964. O b s e r v a t i o n on the r e g u l a t i o n o f the s y n t h e s i s o f the t r i c a r b o x y l i c a c i d c y c l e enzymes ?n Baci1lus subti1 is Marburg. Biochem. B i o p h y s . Res. Commun. 17; 690-695. Hanson, R . S . and Cox, D . P . 196?. E f f e c t of d i f f e r e n t n u t r i t i o n a l c o n d i t i o n s on the s y n t h e s i s o f t r i c a r b o x y l i c a c i d c y c l e enzymes. J . B a c t e r i o l . 93: 1777-1787. Hanson, R . S . , S r i n i v a s a n , V . R . and H a l v o r s o n , H . O . 1963a. Biochemistry o f s p o r u l a t i o n . j _ . Metabolism o f a c e t a t e by v e g e t a t i v e and s p o r u l a t i n g c e l l s . J. Bacteriol. 85.: 451-460. Hanson, R . S . , S r i n i v a s a n , V . R . and H a l v o r s o n , H . O . 1963b. B i o c h e m i s t r y of s p o r u l a t i o n . I I . Enzymatic changes d u r i n g s p o r u l a t i o n o f Baci1lus c e r e u s . J. Bacteriol. 86: 45-50. Hauge, J . G . 1966. Glucose dehydrogenase- P a r t i c u l a t e . _l_. Pseudomonas s p e c i e s and Bacterium a r i i t r a t u m . In Methods in enzymology. V o l . 9. E d i t e d by W.A. Wood. Academic Press, Inc., New YoV-k. pp. St 92-9 Hernandez, E . and Johnson, M . J . 1967. Energy supply and c e l l y i e l d in a e r o b i c a l l y grown microorganisms. J. Bacteriol. 94: 996-1001. Higgins, H. and Von Brand, T . 1966. S e p a r a t i o n o f l a c t i c a c i d and some Krebs c y c l e a c i d s by t h i n - l a y e r chromatography. A n a l . Biochem. 15: 122-126. Hochster, R . M . ' and Stone, B . A . 1956. Anaerobic conversion of D - x y l o s e to t r i o s e phosphate by e x t r a c t s o f Pseudomonas hydrophila. Can. J . M i c r o b i o l . 2: 132-138. Hohorst, H . J . 1963. L-Malate d e t e r m i n a t i o n w i t h m a l i c dehydrogenase and NAD. J_n_ Methods o f enzymatic a n a l y s i s . E d i t e d by H . U . Bergmeyer. Academic P r e s s , I n c . , New Y o r k . pp. 328-332. H o l z e r , H. 1966. T h e c o n t r o l J . 98: 37. o f enzyme p a t t e r n s i n y e a s t . Biochem. H o l z e r , H. a n d S c h n e i d e r , S. 1 9 5 7 . A n r e i c h u n g und T r e n n u n g e i n e r D P N - s p e z i f i s c h e n und e i n e r T P N - s p e z i f i s c h e n G l u t a m i n s a u r e dehydrogenase aus Hefe. B i o c h e m . Z. 3 2 9 : 3 6 1 - 3 6 9 . Horecker, Hug, B.L. 1 9 6 5 . P a t h w a y s o f c a r b o h y d r a t e m e t a b o l i s m and their physiological significance. J . Chem. E d u . 4 2 : 244-253. D.H., R o t h , D. and H u n t e r , J . 1 9 6 8 . Regulation of histidine c a t a b o l i s m by s u c c i n a t e i h Pseudomonas p u t i d a . J . Bacteriol. 96: 396-402. Jacobson, L.A., B a r t h o l o m a u s , R.C. a n d G u n s a l u s , I . C . . 1 9 6 6 . o f m a l i c enzyme by a c e t a t e i n P s e u d o m o n a s . Biochem. R e s . Commun. 2 4 : 9 5 5 ~ 9 6 0 . Repression Biophys. J o n e s , M. a n d K i n g , H.K. 1968. O x i d a t i o n o f d i c a r b o x y l i c a c i d s by s t r i c t aerobes and f a c u l t a t i v e anaerobes. Biochem. J . 108: I I P . K a m e l , M.Y., A l l i s o n , D.P. a n d A n d e r s o n , R.L. 1 9 6 6 . Stereospecific D-glucokinase o f Aerobacter aerogenes. P u r i f i c a t i o n and properties. J . B i o l . Cheni. 241 : 6 9 0 - 6 9 4 . K a p l a n , N.0. 1963Symposium o n m u l t i p l e f o r m s o f enzymes a n d c o n t r o l mechanisms. j _ . M u l t i p l e forms o f enzymes. B a c t e r i o l . Rev. 27_: 1 5 5 - 1 6 9 . Kay, W.W. 1965. M e t a b o l i s m o f 2 - k e t o g l u c o n a t e by Pseudomonas aerug?hOsa. M.Sc. T h e s i s . The U n i v e r s i t y o f B r i t i s h Columb i a . K i n g , E.O., W a r d , M.K. a n d R a n e y , D.E. 1954. Two s i m p l e m e d i a f o r t h e d e m o n s t r a t i o n o f p y o c y a n i n e and f l u o r e s c e i n . J . L a b . C l i n . Med. 4 4 : 3 0 1 - 3 0 7 . K i n g , T.E. 1 9 6 7 . P r e p a r a t i o n o f s u c c i n i c dehydrogenase and r e c o n s t i t u t i o n o f s u c c i n i c o x i d a s e . _l_n_ M e t h o d s i n enzymology. V o l . 10. Edi,ted by R.W. E a s t a b r o o k and M.E. P u l l m a n . A c a d e m i c P r e s s , I n c . , New Y o r k , pp. 3 2 2 - 3 3 1 . K o g u t , M. a n d P o d o s k i , E.P. 1 9 5 3 . f l u o r e s c e n t Pseudomonas. O x i d a t i v e pathways i n a Biochem. J . 55: 8 0 0 - 8 l 1 . K o r n b e r g , H.L. 1961 . S e l e c t i v e u t i l i z a t i o n o f m e t a b o l i c r o u t e s by E s c h e r i c h i a c o l i . C o l d S p r i n g H a r b o r Symp. Q u a n t . B i o l . 26_: ISJ-lWT K o r n b e r g , H.L. 1 9 6 5 . A n a p l e r o t i c sequences i n m i c r o b i a l Angew. Chem. i n t e r n a t . : E d i t . 4_: 5 5 8 - 5 6 5 . metabolism. K o r n b e r g , H.L. 1 9 6 6 . Role and c o n t r o l o f t h e g l y o x y l a t e c y c l e i n Escher?chia coli . B i o c h e m . J . 99.: 1 - 1 1 . K o r n b e r g , H.L. a n d K r e b s , H.A. 1957. Synthesis of cell constituents from C 2 u n i t s by a m o d i f i e d t r i c a r b o x y l i c a c i d c y c l e . Nature 199: 988-991. _ K o r n b e r g , H.L. a n d M a d s e n , N.B. 1958. The m e t a b o l i s m o f C compounds in microorganisms. 3_. S y n t h e s i s o f m a l a t e f r o m a c e t a t e v i a the g l y o x y l a t e c y c l e . B i o c h e m . J . 68_: 5 4 9 - 5 5 7 . 2 K o r n b e r g , H.L. and P h i z a c k e r l e y , P.J.R. 1961. M a l a t e by Pseudbmonas s p p . B i o c h e m . J . 7 9 : 1 0 P . oxidation K r a m p i t z , L.O. 1 9 6 1 . C y c l i c mechanisms o f t e r m i n a l o x i d a t i o n . )n_ T h e b a c t e r i a . Vol . 2 . E d i t e d b y I .C. G u n s a l u s a n d R.Y. S t a n i e r . A c a d e m i c P r e s s , I n c . , New Y o r k . p p . 2 0 9 - 2 5 6 . K u r a m i t s u , H.K. 1 9 6 6 . The e f f e c t s o f a d e n i n e n u c l e o t i d e s on p i g h e a r t malate dehydrogenase. B i o c h e m . B i o p h y s . R e s . Commun. 23_: 329-334. K u r a m i t s u , H.K. 1968. dehydrogenase. Adenine n u c l e o t i d e i n h i b i t i o n o f pea m a l a t e A r c h . Biochem. B i o p h y s . 125: 3 8 3 3 8 4 . _ L e e c h , R.M. and K i r k , P.R. 1968. An N A D P - d e p e n d e n t L - g l u t a m a t e d e h y d r o g e n a s e f r o m c h l o r o p l a s t s o f V i c i a f a b a L. Biochem/ B i o p h y s . Res . Commun. 32_: 6 8 5 - 6 9 0 . L e s s i e , T. a n d N e i d h a r d t , F.C. . ' 196'7a. A d e n o s i n e t r i p h o s p h a t e 1 i n k e d c o n t r o l o f Pseudomonas a e r u g i n o s a g l u c o s e - 6 phosphate dehydrogenase. J . B a c t e r i o l . 9_3_: 1 3 3 7 - 1 3 4 5 . L e s s i e , T. a n d N e i d h a r d t , F.C. 1 9 6 7 b . F o r m a t i o n and o p e r a t i o n o f h i s t i d i n e d e g r a d i n g p a t h w a y i h Pseudomonas a e r u g i h o s a . . J . B a c t e r i o l . 93.: 1 8 0 0 - 1 8 1 0 . L i n g , K.H., P a e t k a u , V., M a r c u s , F. a n d L a r d y , H.A. 1966. Phosphofructokinase. j _ . S k e l e t a l muscle. In Methods in enzymology. V o l . 9. E d i t e d b y W.A. Wood, A c a d e m i c P r e s s , I n c . , New Y o r k . p p . 4 2 5 - 4 2 9 . London, J . in 1968. R e g u l a t i o n and f u n c t i o n o f l a c t a t e o x i d a t i o n Streptococcus faecium. J . B a c t e r i o l . 95: 1380-1387. L o w r y , O.H. , R o s e b r o u g h , M.J., F a r r , L., and R a n d a l l . R . J . P r o t e i n measurement w i t h t h e F o l i n p h e n o l r e a g e n t . J . B i o l . Chem. 1 9 3 : 265-275. 1951. M a c K e l v i e , R.M., C a m p b e l 1 , J . J . R . and G r o n l u n d , A.F. 1968. A b s e n c e o f s t o r a g e p r o d u c t s i n c u l t u r e s o f Pseudomonas a e r u g i n o s a grown w i t h e x c e s s c a r b o n o r n i t r o g e n . Can. J . M i c r o b i o l . V4_: 6 2 7 - 6 3 1 . M a g a s a n i k , B. 1961 . C a t a b o l i t e r e p r e s s i o n . Symp. Q u a n t . B i o l . 2 6 : 2 4 9 - 2 5 6 . M a r r , A.G. Cold Spring Harbor 1960. L o c a l i z a t i o n o f enzymes i n b a c t e r i a . In bacteria. V o l . 1. E d i t e d by I .C. G u n s a l u s and R.Y. A c a d e m i c P r e s s , I n c . , New Y o r k . pp. 4 4 3 - 4 6 8 . The Stanier. M a y b e r r y , W.R., P r o c h a z k a , G . J . and P a y n e , W.J. 1967. Growth y i e l d s o f b a c t e r i a on s e l e c t e d o r g a n i c compounds. Appl.. M i c r o b i o l . j_5_: 1 3 3 2 - 1 3 3 8 . M c F a d d e n , B.A. and Howes, W.V. 1963. C r y s t a l l i z a t i o n and some p r o p e r t i e s o f i s o c i t r a t e l y a s e f r o m Pseudomonas i rid i g o f e r a . J . B i o l . Chem. 2 3 8 : 1737-1742. M c L e a n , P. 1960. C a r b o h y d r a t e m e t a b o l i s m o f mammary t i s s u e . j_l_l_. F a c t o r s i n the r e g u l a t i o n o f pathways o f g l u c o s e c a t a b o l i s m i n t h e mammary g l a n d o f t h e r a t . B i o c h i m . B i o p h y s A c t a 37= 296-309. Monod, J . 1942. R e c h e r c h e s s u r l a c r o i s s a n c e des c u l t u r e s bacteriennes. ( L i b r a r i e S c i e n t i f i q u e Hermannet C i e . , Paris). M o o n e y , P. a n d F o t t r e l l , P.F. 1968. The i n d u c t i o n o f g l u t a m i c d e h y d r o g e n a s e and a s p a r t a t e a m i n o t r a n s f e r a s e i h R h i z o b ? u m . B i o c h e m . J . 110: 17PM o s e s , V. and S h a r p , P.B. 1968. S t u d i e s on t h e r e g u l a t i o n o f g l u c o s e m e t a b o l i z i n g enzymes i h B a c i 1 l u s s u b t i l i s . J . Gen. M i c r o b i o l . ' 5 2 . : 3 9 1 - 4 0 1 . M y e r s , W.F. and H u a n g , K. 1966. Separation of intermediates of c i t r i c a c i d c y c l e and r e l a t e d compounds by t h i n - l a y e r chromatography. A n a l . B i o c h e m . 17: 210-213. Narrod, S.A. a n d Wood, W.A. 1956. Carbohydrate o x i d a t i o n by Pseudomonas f l u o r e s c e n s . V. E v i d e n c e o f g l u c o n o k i n a s e and 2 - k e t o g l u c o n o k i n a s e . J . B i o l . Chem. 220: 45-55. Ng, F.M-W. a n d Dawes, E.A. 1967. R e g u l a t i o n o f enzymes o f g l u c o s e m e t a b o l i s m b y c i t r a t e i h Pseudomonas a e r u g i h o s a . B i o c h e m . J . 104: 4 8 P . Norris, F.C. a n d C a m p b e l l , J . J . R . 1949. The i n t e r m e d i a t e metabolism o f Pseudomonas a e r u g i n o s a . I I I . A p p l i c a t i o n o f paper c h r o m a t o g r a p h y t o t h e i d e n t i f i c a t i o n o f g l u c o n i c and 2-ketogluconic a c i d s , intermediates i n glucose oxidation. Can. J . R e s . C. 27: 253-261. O c h o a , S. 1955. M a l i c d e h y d r o g e n a s e f r o m p i g h e a r t . JJT_ M e t h o d s i n enzymology. V o l . I . E d i t e d b y S.P. C o l o w i c k a n d N.0. Kaplan. A c a d e m i c P r e s s , I n c . , New Y o r k . p p . 735 739. O z a k i , H. a n d S h i i o , I . 1968. R e g u l a t i o n o f t h e TCA a n d g l y o x y l a t e c y c l e s i n Brevibacterium flayum. J_. I n h i b i t i o n o f i s o c i t r a t e l y a s e a n d i s o c i t r a t e d e h y d r o g e n a s e by o r g a n i c a c i d s r e l a t e d t o t h e TCA a n d g l y o x y l a t e c y c l e s . J . B i o c h e m . 64_: 355-363. Pardee, A.B. a n d B e c k w i t h , J . R . 1963Control o f constitutive enzyme s y n t h e s i s . J_n_ I n f o r m a t i o n a l macromolecules. E d i t e d b y H . J . V o g e l , V. B r y s o n a n d J . U . Lampen. A c a d e m i c P r e s s , I n c . , New Y o r k . p p . 255-269. P h i z a c k e r l e y , P.J.R. a n d F r a n c i s , M.J.O. 1966. Cofactor requirements o f t h e L - m a l a t e d e h y d r o g e n a s e o f Pseudorhorias o v a l ?s C h e s t e r . B i o c h e m . J . 101: 524-535Racker, E. 1950. S p e c t r o p h o t o m e t r i c measurement o f t h e e n z y m a t i c f o r m a t i o n o f f u m a r i c a c i d and c i s - a c o n i t i c a c i d s . B i o c h i m . B i o p h y s . A c t a 4_: 211-214. Racker, E. 1954. A l t e r n a t e pathways o f g l u c o s e and f r u c t o s e metabolism. Adv. E n z y m o l . 15.: 141-182. Raps,' S. a n d DeMoss, R.D. 1962. G l y c o l y t i c enzymes mobil i s . J . B a c t e r i o l . 84_: 115-118. i n Zymomonas R o s e h f e l d , H. a n d F e i g e l s o n , P. 1969. S y n e r g i s t i c and product i n d u c t i o n o f t h e enzymes o f t r y p t o p h a n m e t a b o l i s m i n _ Pseudomonas a c i d o v o r a n s . J . B a c t e r i o l . 97: 697 704. R u f f o , A. a n d A d i n o l f i , A. 1 9 6 3 . Inhibition of the isocitric by o x a l m a l a t e . B i o c h e m . J . 89_: 5 0 P . enzyme R u f f o , A., Romano, M. a n d . A d i n o l f i , A. 1959. Inhibition o f aconitase by g l y o x y l a t e p l u s o x a l a c e t a t e . B i o c h e m . J . 72: 613-618. Ruffo, A., T e s t a , E., A d i n o l f i , A. a n d P e l i z z a , G. 1962. Control o f t h e c i t r i c a c i d c y c l e by g l y o x y l a t e . j _ . A new i n h i b i t o r o f a c o n i t a s e f o r m e d by t h e c o n d e n s a t i o n o f g l y o x y l a t e with oxalacetate. Biochem.-J.''8_5_: 588-593. R u f f o , A., T e s t a , E., A d i n o l f i , A., P e l i z z a , G. a n d M o r a t t i , R. 1967. C o n t r o l o f t h e c i t r i c a c i d c y c l e by g l y o x y l a t e . B i o c h e m . J . 103: 19"23. Sable, .H.Z. Adv. 1966. B i o s y n t h e s i s o f r i b o s e and deoxyribose. E n z y m o l . 28: 391-460. S a n w a l , B.D. a n d L a t a , M. 1961. glutamic dehydrogenases 7: 319-328. The o c c u r r e n c e o f t w o d i f f e r e n t i hNeurospbra. Can. J . M i c r o b i o l . S e u b e r t , W. a n d R e m b e r g e r , U. 1961. R e i n i g u n g und W i r k u n g s w e i s e der Pyruvatcarboxylase a u s Pseudombrias c i t r o n e l 1 6 1 i s . B i o c h e m . Z. 334: 401-414. Shiio, I . a n d O z a k i , H. 1968. Concerted i n h i b i t i o n o f i s o c i t r a t e d e h y d r o g e n a s e by g l y o x y l a t e p l u s o x a l a c e t a t e . J . Biochem. 64: 45-53. Singer, T.P. a n d K e a r n e y , E.B. 1963. S u c c i n i c dehydrogenase. j_n_ T h e e n z y m e s . V o l . 7. E d i t e d by P.D. B o y e r , H. L a r d y and K. M y r b a c k . A c a d e m i c P r e s s , I n c . , New Y o r k . p p . 383 445. Singer, T.P. a n d L u s t y , C . J . 1963. Fumarate. In M e t h o d s o f e n z y m a t i c analysis. E d i t e d by H.L). B e r g m e y e r . A c a d e m i c P r e s s , I n c . , New Y o r k . pp. 346-349. S m i t h , A . J . , L o n d o n , J . a n d S t a n i e r , R.Y. I967. B i o c h e m i c a l basis of o b l i g a t e autotrophy i n b l u e - g r e e n a l g a e and t h i o b a c i l l i . J . B a c t e r i o l . 94: 972-983. Smith, I . 1960. C h r o m a t o g r a p h i c and e l e c t r o p h o r e t i c t e c h n i q u e s . V o l . 1. I n t e r s c i e n c e P u b l i s h e r s I n c . , New Y o r k . S m i t h , L. 1961. C y t o c h r o m e s y s t e m s i n a e r o b i c e l e c t r o n t r a n s p o r t . }JI The b a c t e r i a . V o l . 2. E d i t e d by I.C. G u n s a l u s a n d R.Y. S t a n i e r . A c a d e m i c P r e s s , I n c . , New Y o r k . pp. 365 _ 396. S m i t h , R.A. a n d G u n s a l u s , I.C. 1957. I soc i . t r a t a s e : Enzyme p r o p e r t i e s and r e a c t i o n e q u i l i b r i u m . J . B i o l . Chem. 229: 305-319. S n y d e r , F. a n d S t e p h e n s , N. 1962. Q u a n t i t a t i v e c a r b o n - 1 4 a n d t r i t i u m assay o f t h i n - l a y e r chromatography p l a t e s . A n a l . B i o c h e m . 4: 128-131. S o k a t c h , J . R . 1967. M e t a b o l i s m o f p r o p i o n a t e by enzymes o f Pseudomonas a e r u g i n o s a grown on v a l i ne. Bacteriol. P r o c . 67: 133. S o m e r v i l l e , H . J . 1968. E n z y m i c s t u d i e s on t h e b i o s y n t h e s i s o f a m i n o a c i d s f r o m l a c t a t e by P e p t o s t r e p t o c o c c u s elsden??. B i o c h e m . J . 108: 107-119. Spangler, W.J. a n d G i l m o u r , C M . 1966. B i o c h e m i s t r y o f n i t r a t e r e s p i r a t i o n i h Pseudomonas s t u t z e r i . J_. A e r o b i c , a n d n i t r a t e r e s p i r a t i o n routes o f carbohydrate catabolism. J . B a c t e r i o l . 9J_: 245-250. S t a n i e r , R.Y., G u n s a l u s , I .C. a n d G u n s a l u s , C F . 1953- The e n z y m a t i conversion o f mandelic acid t o benzoic a c i d . I I . Properties o f t h e p a r t i c u l a t e f r a c t i o n s . J . B a c t e r i o l . 6 6 T 543-547. S t a n i e r , R.Y., P a l l e r o n i , N . J . a n d D o u d o r o f f , M. 1966. The a e r o b i c pseudomonads: a t a x o n o m i c s t u d y . J . G e n . M ? c r o b i o l . 42: 159-271. S t e r n , i l . . . J . , 'Wang, C.H. a n d G i l m o u r , C M . 1960. Comparative c a t a b o l i s m o f c a r b o h y d r a t e s i n Pseudomonas s p e c ? e s . J . B a c t e r i o l . 79_: 601-611. S t e r n , J.R. 1957. E s t i m a t i o n o f c i t r i c a c i d . J_n_ M e t h o d s i n enzymology. V o l . 3. E d i t e d by S.P. C o l o w i c k and N.O. A c a d e m i c P r e s s , I n c . , New Y o r k . pp. 426-428. Kaplan S t e r n , J . R . a n d B a m b e r s , G. 1966. Glutamate b i o s y n t h e s i s i n anaerob bacteria. j _ . The c i t r a t e p a t h w a y o f g l u t a m a t e s y n t h e s i s i n C16str?dium k1uyveri. B i o c h e m i s t r y 5} 1113-1118. Strasers, K . C a n d W i n k l e r , K.C. 1963Carbohydrate metabolism o f S t a p h y l o c o c c u s : a u r e u s . J . G e n . M i c r o b i o l . 33: 213~229. T c h o l a , 0. a n d H o r e c k e r , B . L . 1966. TransaIdolase. In M e t h o d s in enzymology. V o l . 9. E d ? t e d by W.A. Wood, A c a d e m i c P r e s s , I n c . , New Y o r k . p p . 499-505. T h u n b e r g , T. 1920. Z u r Kenntnis des i n t e r m e d i a r e n S t o f f w e c h s e l s und d e r d a b e i w i r k s a m e n Enzyme. Skand. A r c h . P h y s i o l . 40: 1-91 . Umbreit, W.W., B u r r i s , R.H. a n d S t a u f f e r , J . F . 1957. Manometric techniques. B u r g e s s P u b l i s h i n g Go., M i n n e a p o l i s , M i n n . V a l e n t i n e , W.N. a n d T a n a k a , K.R. 1966. Pyruvate kinase: Clinical a s p e c t s . _l_h M e t h o d s i n e n z y m o l o g y . V o l . 9. E d i t e d by W.A. Wood, A c a d e m i c P r e s s , I n c . , New Y o r k . p p . 468-473. * V e n d e r , J . , J a y a r a m a n , K. a n d R i c k e n b e r g , H.V. 1965. Metabolism o f g l u t a m i c a c i d i n . a mutant o f E s c h e r i c h i a c b l ? . J . B a c t e r i o l . 90_: 1304-1307. Von T i g e r s t r o m , M. a n d Campbel1, J . J . R . 1966a. T h e a c c u m u l a t i o n o f a - k e t o g l u t a r a t e b y s u s p e n s i o n s o f Pseudomonas a e r u g i h o s a . Can. J . M i c r o b i o l . 12: 1005-1013. Von T i g e r s t r o m , M. a n d C a m p b e l l , J . J . R . 1966b. T h e t r i c a r b o x y l i c a c i d c y c l e , t h e g l y o x y l a t e c y c l e a n d t h e enzymes o f g l u c o s e o x i d a t i o n i n Pseudbmonas a e r u g i n o s a . Can. J . M i c r o b i o l . U_: 1015-1022. Wang, C.H., S t e r n , L . J . a n d G i l m o u r , C M . 1959. The c a t a b o l i s m o f g l u c o n a t e i n Pseudomonas s p e c i e s . A r c h . B i o c h e m . B i o p h y s . . 8_1_: 489-492. W e i s s , E. 1967. The t r a n s a m i n a s e a c t i v i t y a n d o t h e r e n z y m a t i c r e a c t i o n s i n v o l v i n g pyruvate and glutamate i n Chlamydia (Psittacosis-Trachoma group). J . B a c t e r i o l . 93: 177-184. W e s t h e a d , E.W. 1966. Enolase from y e a s t Methods i n enzymology. V o l . 9. A c a d e m i c P r e s s , I n c . , New Y o r k . a n d r a b b i t m u s c l e . In E d i t e d by W.A. Wood. p p . 670^679. W h i t e , D . C , B r y a n t , M.P. a n d C a l d w e l l , D.R. 1962. Cytochrome linked fermentation i nBacteroides ruminicbla. J . Bacteriol. 84_: 822-828. W i l l i a m s , P . J . l e B . a n d W a t s o n , S.W. 1968. Autotrophy oceahus. J . B a c t e r i o l . 96: '1646-1648. in Nltrbcystis Wimpenny, J.W.T. a n d W a r m s l e y , A.M.H. 1968. The e f f e c t o f n i t r a t e on K r e b s c y c l e enzymes i n v a r i o u s b a c t e r i a . B i o c h i m . B i o p h y s . A c t a 156: 297-303. Wong, D.T.O. a n d A j 1 , S . J ; 1956. C o n v e r s i o n o f a c e t a t e and g l y o x y l a t e t o m a l a t e . J . Amer. Chem. S o c . 78: 3230-3231 Wood, W.A. a n d S c h w e r d t , R.F. 1953. C a r b o h y d r a t e o x i d a t i o n by Pseudomonas f 1 u o r e s c e n s . I . T h e m e c h a n i s m o f g l u c o s e an gluconate oxidation. J . B i o l . Chem. 201: 501-511. Wood, W.A. a n d S c h w e r d t , R.F. 1954. C a r b o h y d r a t e o x i d a t i o n by Pseudomonas f l u o r e s c e n s . I I . Mechanism o f hexose phosphate o x i d a t i o n . J . B i o l . Chem. 2 0 6 : 625-635.
© Copyright 2026 Paperzz