Release of natural radionuclides from NORM-residues caused by sewage J. Dilling1, K. Flesch2, R. Gellermann3, J. Gerler1, H. Hummrich2, V. Neumann4, R. Knappik5, H. Schulz2 1Federal Office for Radiation Protection, Berlin 2IAF - Radioökologie GmbH, Dresden 3FUGRO-HGN GmbH, Magdeburg 4BGD, Dresden 5VKTA, Rossendorf 2nd Workshop of the European ALARA Network for NORM, Dresden 2009 Legal Framework Radiation Protection Ordinance Positive List Introduction of surveillance limits depending on the recycling or disposal option If exceeding SLs formal release of surveillance necessary Precondition: D < 1mSv/a (members of the public) joint disposal depending on specific activity and landfill parameters site specific dose assessments (realistic scenarios, parameters, models) Dose assessment Pathways of concern — inhalation of Radon and its decay products — inhalation of contaminated dust — direct ingestion of contaminated soil — exposure to external gamma radiation — ingestion of locally produced food (incl. drinking water) grown on contaminated sites irrigation with contaminated water Dose assessment Pathway: Ingestion of locally produced food focussing on water disposed or recycled NORM seepage water well surface water ground water source term: which radionuclide concentrations will be released? Approach Crosslink conventional hazards Standard methods for assessing waste and contaminated soil regarding potential groundwater contaminations — soil saturation extract — pH-Stat — elution with water (1:10, 1:2 respectively) — column experiments Present study Feasibility study regarding methodical approaches Approach Soil saturation extract (technical realisation) original sample + deion. water to moisten completely , keeping 24 h at 5°C adding water until flow limit is reached, keeping another 24 h at 5°C centrifugation and filtration with membrane filters (pore size 0,45 µm) Approach Soil saturation extract original sample + deion. water to moisten completely , keeping 24 h at 5°C Methodical advantages and disadvantages — close to reality material/water ratio (+) adding until flow — no fixed waterwater / solid ratio (-) limit is reached, keeping another 24 h at 5°C — small sample volume (5-30ml /100g) (-) — not convenient for very fine and very coarse textured material (-) centrifugation and filtration with membrane filters (pore size 0,45 µm) Approach pH-Stat (technical realisation) field moist sample + deion. Water (1:10), 24 h stirring, adding HNO3 by means of an automatic titrator until pH 4 filtration with membrane filters (pore size 0,45 µm) Approach pH-Stat Methodical advantages and disadvantages field moist sample + deion. Water (1:10), — determination of the leachable contaminants according to a worst-case scenario (+) 24 h stirring, adding HNO3, by means of an — information of buffering capacity (+) automatic titrator until pH 4 — no pH-Stat experiment at low pH value (<4) (-) filtration with membrane filters (pore size 0,45 µm) Approach Elution with water 1:10 and 1:2 (technical realisation) field moist sample + deion. Water (1:10, 1:2 respectively) 24 h overhead-rotating shaker at room temperature filtration with membrane filters (pore size 0,45 µm) Approach Elution with water 1:10 and 1:2 Methodical advantages and disadvantages — leachate volume+large enough the following field moist sample deion. Waterfor (1:10, 1:2 respectively) analysis (+) 24 h overhead-rotating shaker at room temperature — abrasion of particles during the extraction procedure (-) filtration with filters — 1:10 material/water ratio:membrane excess water 1:2 material/water ratio closer reality (see soil sat. (pore size 0,45toµm) Extract) Approach Column experiment – experimental setup insert sample in column, wetting from downside up within 24 h keeping 24 h at 10°C 6-20x exchange of one pore volume within 24 h intermittently driven Approach Column experiment – end of experiment „quasi steady state“ situation no alteration in physico-chemical properties like pH, redox-potential EC pH Redox I Pi/Pi 1 1,2 0,8 „steady-state“ 0,4 0,0 0 5 10 PV 15 20 Approach Column experiment – end of experiment „quasi steady state“ situation no alteration in physico-chemical properties like pH, redox-potential EC pH Redox I Redox II Pi/Pi 1 1,2 0,8 „steady-state“ 0,4 0,0 0 5 10 PV 15 20 Approach Determining the source term C soil saturation extract different concentration levels expected !! elution with water 1:2 elution with water 1:10 column experiment t Approach 28 different NORM residues investigated — slags from primary metallurgic processes in the raw iron and nonferrous metallurgy — sludges and dust from the smoke gas filtering with the primary metallurgic processes in the raw iron and non-ferrous metallurgy — sludges and sediments from the recovery of oil and natural gas (Scales) — red mud from the extraction of bauxite — tailings from the extraction of uranium — residues of water treatment facilities Approach Analysed parameters • Residue — U-238 series: U-238, Th-230, Ra-226, Pb-210, (Po-210) — U-235 series: Ac-227 — Th-232 series: Ra-228, Th-228, (Th-232) — K-40 • Leachate — U-238, Ra-226, Pb-210, Ra-228 (Th-228, Ac-227, Po-210) — Major ions: Cl-, HCO3-, SO42-, Na+, K+, Ca2+, Mg2+ — pH, electrical conductivity • Analysing methods — Gamma spectrometry — Alpha spectrometry — Liquid Scintillation Counting (LSC) — ICP-MS Results Data mining Different water / solid ratios results not comparble normalisation required activity-concentration scaled on pore volume aiPV of undisturbed soil: a iPV i a ileachate WF d n a leachate: activity-concentration in leachate [Bq/l] WF: Water/material ratio [l/kg] d: oven-dry density [g/cm³] n: porosity leachable fraction Ri: i aleachate WF Ri Ai Ai: specific activity [Bq/kg] Results U-238 activity concentration scaled on pore volume 1E+7 U-238 (1+10) U-238 (pH-Stat) U-238 (SSE) U-238 (1+2) 1E+6 1E+5 mBq/l 1E+4 1E+3 1E+2 1E+1 ww filter gravel ww filter gravel ww filter gravel tailings tailings tailings red mud scales dem. residues dem. residues phosphate slag Theisen sludge furnace gas furnace sludge gas sinter dust Cu-slag Ni-slag 1E+0 1.1 1.2 1.10 2.5 2.9 2.15 3.2 3.4 3.13 4.1 5.1 5.2 5.4 6.1 6.6 6.7 Due to the acidification during the pH-Stat experiment trends to result in highest concentration Results U-238 leachable fraction U-238 (1+10) U-238 (pH-Stat) U-238 (SSE) U-238 (1+2) 1E+0 1E-1 1E-2 1E-3 1E-4 1.1 1.2 1.10 2.5 2.9 2.15 3.2 3.4 3.13 4.1 5.1 5.2 5.4 Tailings: close to 100% release feasible ww filter gravel ww filter gravel ww filter gravel tailings tailings tailings red mud scales dem. residues dem. residues Cu-slag Ni-slag 1E-6 phosphate slag Theisen sludge furnace gas furnace sludge gas sinter dust 1E-5 6.1 6.6 6.7 Results Ra-226 activity concentration scaled on pore volume 1E+6 Ra-226 (1+10) Ra-226 (pH-Stat) Ra-226 (SSE) Ra-226 (1+2) 1E+5 mBq/l 1E+4 1E+3 1E+2 ww filter gravel ww filter gravel ww filter gravel tailings tailings tailings red mud scales dem. residues dem. residues Cu-slag Ni-slag 1E+0 phosphate slag Theisen sludge furnace gas furnace sludge gas sinter dust 1E+1 1.1 1.2 1.10 2.5 2.9 2.15 3.2 3.4 3.13 4.1 5.1 5.2 5.4 6.1 6.6 6.7 Due to the acidification during the pH-Stat experiment trends to result in highest concentration Results Ra-226 leachable fraction Ra-226 (1+10) Ra-226 (pH-Stat) Ra-226 (SSE) Ra-226 (1+2) 1E+0 1E-1 1E-2 1E-3 1E-4 1.1 1.2 1.10 2.5 2.9 2.15 3.2 3.4 3.13 4.1 5.1 5.2 5.4 ww filter gravel ww filter gravel ww filter gravel tailings tailings tailings red mud scales dem. residues dem. residues Cu-slag Ni-slag 1E-6 phosphate slag Theisen sludge furnace gas furnace sludge gas sinter dust 1E-5 6.1 6.6 6.7 Low leachable fraction for demercurised residues and scales Results 1E+9 1E+8 1E+7 1E+6 1E+5 1E+4 1E+3 1E+2 1E+1 1E+0 ww filter gravel ww filter gravel ww filter gravel tailings tailings tailings red mud scales dem. residues dem. residues phosphate slag Theisen sludge furnace gas furnace sludge gas sinter dust Cu-slag Pb-210 (1+10) Pb-210 (pH-Stat) Pb-210 (SSE) Pb-210 (1+2) Ni-slag mBq/l Pb-210 activity concentration scaled on pore volume 1.1 1.2 1.10 2.5 2.9 2.15 3.2 3.4 3.13 4.1 5.1 5.2 5.4 6.1 6.6 6.7 Highest concentration due to the acidification during the pHStat experiment are evident Results Pb-210 leachable fraction Pb-210 (1+10) Pb-210 (pH-Stat) Pb-210 (SSE) Pb-210 (1+2) 1E+0 1E-1 1E-2 1E-3 1E-4 1.1 1.2 1.10 2.5 2.9 2.15 3.2 3.4 3.13 4.1 5.1 5.2 5.4 ww filter gravel ww filter gravel ww filter gravel tailings tailings tailings red mud scales dem. residues dem. residues Cu-slag Ni-slag 1E-6 phosphate slag Theisen sludge furnace gas furnace sludge gas sinter dust 1E-5 6.1 6.6 6.7 Elevated leachable fraction for sinter dust and water work residues Results Data mining column experiments total leached load Ain,abs Ani ,abs a n i leachate,n Vleachate,n relative leached load Firel 1 i a leachate,n: activity conc. in n-th leachate [Bq/l] Vleachate,n: volume n-th leachate [l] i A i Frel n,abs m Ai m: mass of material in column [kg] Ai: specific activity [Bq/kg] Results Theisen sludge – intermittently driven column experiment activity concentrationen 1E+4 Ra-226 Pb-210 1E+1 U-238 3,7 Ra-226 Pb-210 1E+0 Bq 1E+3 mBq/l leached activity (accumulated) 1E+2 1E-2 1E+0 1E-3 2 8 6 4 pore volume 10 12 0,14 1E-1 1E+1 0 U-238 0,025 0 2 8 6 4 pore volume 10 12 Results Theisen sludge – comparison between different leaching methods U-238 Ra-226 Pb-210 rel. leached load 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 SSE CE 1.leachate CE 10.leachate pH-stat 1+10 1+2 Results Tailings – intermittently driven column experiment activity concentration leached activity (accumulated) 1E+5 1E+2 92 Ra-226 U-238 1E+1 1E+3 Bq mBq/l 1E+4 1E+2 1,7 1E+0 1E+1 Ra-226 U-238 1E+0 0 2 4 6 pore volume 8 10 1E-1 0 2 4 6 pore volume 8 10 Results Tailings – comparison between different leaching methods 1E+0 U-238 Ra-226 rel. leached load 1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 SSE CE 1.leachate CE 10.leachate pH-stat 1+10 1+2 Conclusions — This present study is the first complex investigation about the release of radionuclides by sewage from NORM . — The soil saturation extract offers only a marginal sample volume, meaning the determination of radionuclides is in many cases impossible. — The elution with water is easy to handle and gives qualitative informations about the radionuclides released. — Caused by the lowered pH of 4 the results of pH-Stat experiments show, as expected, higher activity concentrations compared to other methods. Conclusions — The realisation of intermittently driven column experiments is more sophisticated compared to batch experiments, but the results offer informations about time depending leaching of radionuclides. — No alteration in the physico-chemical properties (e.g. pH and redox-potential) assumed the electric conductivity is a suitable parameter to determine „quasi steady-state“ conditions. — The transferability of the well-established methods (elution with water, the pH-Stat, intermittently driven column experiments) from waste legislation on radiological purposes could be shown. Thank you for your attention Legal Framework List of residues requiring surveillance (Radiation Protection Ordinance – RPO): “Positive List” — sludges and sediments from oil and natural gas extraction — unconditioned phosphor gypsum, dust, sludges and slags occurring during processing of raw phosphate — waste rock, sludges, sands, slags and dusts from the extraction and preparation of bauxite, columbite, copper shale, tin… — dust and sludge from smoke gas filtering within primary metallurgic processes in the raw iron and non-ferrous metallurgy Exception: • C < 0,2 Bq/g • Introduced in technological processes specified in the positive list as raw material Legal Framework — Based on Directive 96/29 EURATOM (European Basic Safety Standards) — Systematic research for identifying relevant processes and materials — Radiological criterion: 1 mSv/a to members of the public (added to the natural background level) — Results: • fate of particular industrial residues of concern • U-238 and Th-232 series relevant List of residues needing surveillance – Radiation Protection Ordinance (RPO 2001) NORM residues Slags from primary metallurgic processes in the raw iron and nonferrous metallurgy P1.1 Ni-Slags P1.2 Cu-Slags P1.3 Sandy residues from tin ore prosessing P1.8 Casting cinder P1.10 Phosphate slags P1.10 5 cm NORM residues Sludges and dust from the smoke gas filtering with the primary metallurgic processes in the raw iron and non-ferrous metallurgy P2.5 Theissen sludge P2.9 Furnace gas sludges P2.13 Sinter dust P2.14 Furnace gas sludges P2.15 Sinter dust NORM residues Sludges and sediments from the recovery of oil and natural gas (Scales) P3.3 P3.2 P3.2 to P3.5 demercurised residues P3.6 & P3.13 dry Scales 5 cm 5 cm P3.5 P3.4 5 cm P3.6 5 cm P3.13 2 cm 2 cm Not considered: oily sludges NORM residues Red Mud from the extraction of bauxite P4.1 Red mud Lauta P4.2 Red mud AOS Stade NORM residues Tailings from the extraction of Uranium P5.1 P5.2 5 cm 5 cm P5.3 P5.4 5 cm 5 cm P5.1, P5.3 & P5.4 silt-dominated Tailings P5.2 sand-dominated Tailings NORM residues Residues of water treatment facilities P6.1, P6.3, P6.6 & P6.7 different filter gravel P6.9 Filtrolite P6.11 powdered immobilisate (mine water clean up from former uranium mining) 1E-06 Immobilisat 2 filtrolite ww-filter gravel 4 ww-filter gravel 3 ww-filter gravel 2 ww-filter gravel 1 tailing 4 tailing 3 tailing 2 tailing 1 red mud 2 red mud 1 scale 2 scale 1 dem. residue 4 1E-02 dem. residue 3 1E-01 dem. residue 2 1E+00 dem. residue 1 sinter dust 2 furnace gas sludge 2 sinter dust 1 furnace gas sludge 1 Theisensludge phosphate slag casting cinder sandy tin ore residue Cu-slag Ni-slag i a PV (mBq/l) Results Activityconcentration normalised to porevolume U-238 (1+10) U-238 (ph-stat) U-238 (SSE) U-238 (1+2) 1E-03 1E-04 1E-05 1E-06 Immobilisat 2 filtrolite tailing 4 ww-filter gravel 1 ww-filter gravel 2 ww-filter gravel 3 ww-filter gravel 4 tailing 3 tailing 2 tailing 1 red mud 2 red mud 1 PV (mBq/l) 1E-01 scale 2 i 1E+00 sinter dust 2 dem. residue 1 dem. residue 2 dem. residue 3 dem. residue 4 scale 1 sinter dust 1 furnace gas sludge 2 Cu-slag sandy tin ore residue casting cinder phosphate slag Theisensludge furnace gas sludge 1 Ni-slag a Results Activityconcentration normalised to porevolume Ra-226 (1+10) Ra-226 (ph-stat) Ra-226 (SSE) Ra-226 (1+2) 1E-02 1E-03 1E-04 1E-05 1E-06 water work filter gravel 3 water work filter gravel 2 water work filter gravel 1 tailing 3 tailing 2 1E-01 tailing 1 1E+00 red mud 1 scale dem. residue 2 dem. residue 1 sinter dust furnace gas sludge Theisen sludge phosphate slag Cu-slag Ni-slag i a PV (mBq/l) Results Activityconcentration normalised to porevolume Pb-210 (1+10) Pb-210 (ph-stat) Pb-210 (SSE) Pb-210 (1+2) 1E-02 1E-03 1E-04 1E-05
© Copyright 2026 Paperzz