Asilomar FLUXNET Workshop Dennis Baldocchi University of California, Berkeley Bag of Tools To Assess Terrestrial Carbon Budgets at Across Scales Global and Regional Inversion Modeling Eddy Flux Measurements/ FLUXNET Remote Sensing/ MODIS Forest/Biomass Inventories Biogeochemical/Ecosystem Modeling Philosophy • We are Scientists, Not Experimentalists or Modelers • We need multiple constraints to understand the ‘breathing of the biosphere’ because it is a complex, non-linear process that spans 14 orders of magnitude in time and space • We are applying the Linux model to science, open access/open source – Improves the product via its use by multiple agents – It is built on trust, sharing, collaboration and two-way interaction Ideas • Produce and Provide Data to parameterize and refine complex, coupled models • Validate Models at Tower Sites, via time series • Validate Models across climate and ecosystem gradients • Develop value added products, e.g. grid average fluxes • Use models to diagnose limits with measurements • Use Models to ask and answer scientific questions pertaining to the ‘breathing of the biosphere’ across a spectrum of time and space scales Data and Results Probability Distribution of Published NEE Measurements, Integrated Annually 0.07 0.06 0.05 mean: -182.9 gC m-2 y-1 std dev: 269.5 n: 506 p(x) 0.04 0.03 0.02 0.01 0.00 -1500 -1000 -500 0 FN (gC m-2 y-1) Baldocchi, Austral J Botany, 2008 500 1000 1500 Interannual Variability in NEE is tiny across the Global Network 0.25 FLUXNET Network, 75 sites 2002: -220 +/- 35.2 gC m-2 y-1 2003: -238 +/- 39.9 2004: -243 +/- 39.7 2005: -237 +/- 38.7 0.20 p(NEE) 0.15 0.10 0.05 0.00 -1000 -800 -600 -400 -200 0 NEE (gC m-2 y-1) 200 400 600 Interannual Variability in GPP is tiny across the Global Network, too 2002: 1117 +/- 74.0gC m 2003: 1103 +/- 67.8 2004: 1162 +/- 77.0 2005: 1133 +/- 70.1 -2 -1 y 0.25 FLUXNET Network, 75 sites p(GPP) 0.20 0.15 0.10 0.05 0.00 0 500 1000 1500 2000 GPP (gC m-2 y-1) 2500 3000 3500 FLUXNET, 75 sites 0.25 2003: 8.86 +/- 0.82 C 2004: 8.2 +/- 0.86 2005: 8.84 +/- 0.78 0.20 Little Change in Abiotic Drivers-annual Rg, ppt --across Network pdf 0.15 0.10 0.05 0.00 -10 -5 0 5 10 15 20 25 30 Tair, C 2003: 4.70 +/- 0.129 GJ m-2 y-1 2004: 4.67 +/- 0.132 2005: 4.59 +/- 0.135 FLUXNET database 0.35 0.35 0.30 0.30 2003: 721 +/- 59 mm 2004: 855 +/- 54 2005: 806 +/- 46 0.25 0.25 0.20 pdf pdf 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 1 0.00 0 500 1000 1500 precipitation 2000 2500 2 3 4 5 Rg (GJ m-2 y-1) 6 7 8 Does Net Ecosystem Carbon Exchange Scale with Photosynthesis? 1000 750 250 -2 -1 FN (gC m y ) 500 0 -250 -500 -750 -1000 0 500 1000 1500 2000 2500 3000 3500 4000 FA (gC m-2 y-1) Ecosystems with greatest GPP don’t necessarily experience greatest NEE Baldocchi, Austral J Botany, 2008 Ecosystem Respiration Scales Tightly with Ecosystem Photosynthesis, But Is with Offset by Disturbance 4000 Undisturbed Disturbed by Logging, Fire, Drainage, Mowing 3500 FR (gC m-2 y-1) 3000 2500 2000 1500 1000 500 0 0 500 1000 1500 2000 2500 FA (gC m-2 y-1) Baldocchi, Austral J Botany, 2008 3000 3500 4000 Net Ecosystem Carbon Exchange Scales with Length of Growing Season Temperate and Boreal Deciduous Forests Deciduous and Evergreen Savanna 200 FN (gC m-2 yr-1) 0 -200 -400 -600 -800 -1000 50 100 150 200 250 300 Length of Growing Season, days Baldocchi, Austral J Botany, 2008 350 Decadal Plus Time Series of NEE: Flux version of the Keeling’s Mauna Loa Graph 10 8 Harvard Forest, 1991-2004 6 -2 -1 NEE (gC m d ) 4 2 0 -2 -4 -6 -8 -10 1990 1992 1994 1996 1998 Year Data of Wofsy, Munger, Goulden, et al. 2000 2002 2004 2006 Interannual Variation and Long Term Trends in Net Ecosystem Carbon Exchange (FN), Photosynthesis (FA) and Respiration (FR) Harvard Forest 1800 Carbon Flux (gC m-2 y-1) 1600 1400 1200 FN 1000 0 FA FR -200 -400 -600 1990 1992 1994 1996 1998 Year Urbanski et al 2007 JGR 2000 2002 2004 2006 Lag Effects Due to 2003 European Drought/Heat Stress 20 10 NEE [g C m-2 week-1] 0 -10 -20 -30 -40 -50 -60 -70 Hainich Leinefelde -80 2002 Knohl et al Max Planck, Jena 2003 2004 2005 Potential and Real Rates of Gross Carbon Uptake by Vegetation: Most Locations Never Reach Upper Potential GPP at 2% efficiency and 365 day Growing Season tropics GPP at 2% efficiency and 182.5 day Growing Season FLUXNET 2007 Database Emergent Scale Process: CO2 Flux and Diffuse Radiation •We are poised to see effects of Cleaner/Dirtier Skies and Next Volcano Niyogi et al., GRL 2004 Time Since Disturbance Affects Net Ecosystem Carbon Exchange Conifer Forests, Canada and Pacific Northwest 1000 800 FN (gC m-2 y-1) 600 400 200 0 -200 -400 -600 1 10 100 1000 Stand Age After Disturbance Baldocchi, Austral J Botany, 2008 Data of teams lead by Amiro, Dunn, Paw U, Goulden Role of Proper Model Abstraction ESPM 111 Ecosystem Ecology Emergent Processes: Impact of Leaf Clumping on Canopy Light Response Curves Deciduous forest -2 -1 Fc (mol m s ) -40 (a) -30 -20 -10 0 model: spherical leaves 10 0 500 1000 1500 2000 2500 -2 -1 Fc (mol m s ) -40 -30 (b) -20 -10 measured model: clumped leaves 0 10 0 500 1000 PPFD 1500 -2 (mol m 2000 -1 s ) 2500 Scales of Interannual Variability Walker Branch Watershed, TN: 1981-2001 CANOAK 1 year 130 days nSnee/nee 0.1 0.01 7 years 0.001 0.0001 0.0001 0.001 0.01 Frequency (1/day) 0.1 1 Seasonality of Photosynthetic Capacity Wang et al, 2007 GCB Optimizing Seasonality of Vcmax improves Prediction of Fluxes Wang et al, 2007 GCB Flux data Aren’t always the Perfect Truth 10 5 -1 -2 mol m s CO2 Flux Density 0 -5 -10 -15 -20 -25 0 4 8 12 16 20 24 time (hours) Ne: measured (-4.84 gC m-2 day-1) Ne: computed (-5.09 gC m-2 day-1) -2 -1 Fwpl+Storage: measured (-5.96 gC m day ) -2 -1 Fwpl: measured (-6.12 gC m day ) Test Model Response Functions with Data Canoak vs Deciduous Forests 1800 GPP(gC m-2 y-1) 1600 1400 1200 1000 800 CANOAK, Oak Ridge Deciduous Forests, FLUXNET 600 600 800 1000 1200 Reco (gC m-2 y-1) 1400 1600 1800 NEE and Growing Season Length Temperate Deciduous Forests 0 -100 NEE (g C m-2 year-1) -200 -300 -400 -500 -600 CANOAK, Oak Ridge, TN Published Measurements, r2=0.89 -700 -800 120 140 160 180 200 Days with NEE < 0 220 240 Soil Temperature: An Objective Indicator of Phenology?? Soroe, Denmark Beech Forest 1997 20 NEE, gC m-2 d-1 Tair, recursive filter, oC Tsoil, oC 15 10 5 0 -5 -10 0 50 100 150 200 day Data of Pilegaard et al. 250 300 350 Soil Temperature: An Objective Measure of Phenology, part 2 Temperate Deciduous Forests 160 150 140 Day NEE=0 130 Denmark Tennessee Indiana Michigan Ontario California France Massachusetts Germany Italy Japan 120 110 100 90 80 70 70 80 90 100 110 120 Day, Tsoil >Tair Baldocchi et al. Int J. Biomet, 2005 130 140 150 160 Spatialize Phenology with Transformation Using Climate Map 160 Day of NEE = 0 140 120 100 Coefficients: b[0]: 169.3 b[1]: -4.84 r ²: 0.691 80 60 Baldocchi, White, Schwartz, unpublished 4 6 8 10 12 Mean Air Temperature, C 14 16 18 Flux Based Phenology Patterns with Match well with data from Phenology Network White, Baldocchi and Schwartz, unpublished NEE, 2001-2006: Upscaling Tower Fluxes with Remote Sensing, Climate and Regression Tree analysis J. Xiao Effects of Functional Types and Rsfc on Normalized Evaporation 2.00 1.75 Wheat Corn 1.50 Boreal jackpine forest Temperate deciduous forest Mediterranean oak-grass savanna LE/LEeq 1.25 1.00 0.75 0.50 0.25 0.00 10 100 1000 -1 Rcanopy (s m ) Rc is a f(LAI, N, soil moisture, Ps Pathway) 10000 Gc ~ f ( LAI , Gs max , N , v ) Boreal Forest 1.3 k=10 1.2 k=8.0 k=7.0 QE/QE,eq 1.1 1.0 0.9 0.8 0.7 0.6 0 20 40 60 80 100 120 140 160 180 200 Vcmax*LAI ESPM 129 Biometeorology Stand Age also affects differences between ET of forest vs grassland Plynlimon, Wales 900 grassland conifer forest Evaporation (mm y-1) 800 700 600 500 400 300 200 1970 1975 1980 1985 1990 Year Marc and Robinson, 2007 HESS 1995 2000 2005 2010 Use Models and Data to ask Science Questions Global Convergence of Leaf Temperature (????) Helliker and Richer 2008, Nature ESPM 129 Biometeorology 35 Probability density function of mean leaf temperature of a broadleaved forest in Tennessee Temperate Broadleaved Forest Days 100 to 273 0.12 0.10 1993 1981 1982 1984 1994 1997 1995 0.08 pdf 0.06 0.04 0.02 0.00 0 10 20 T leaf ESPM 129 Biometeorology 30 40 36 Ponderosa Pine, Metolius, OR 0.14 0.12 Tleaf Tair 0.10 pdf 0.08 0.06 0.04 Transpiration-weigthed Tleaf = 23.6 C 0.02 0.00 -20 -15 -10 -5 0 5 10 Tleaf (C) 15 20 25 30 35
© Copyright 2026 Paperzz