Supporting Information for Porous Two-Dimensional Nanosheets Converted from Layered Double Hydroxides and Their Applications in Electrocatalytic Water Splitting Hanfeng Liang,†,‡ Linsen Li,† Fei Meng,† Lianna Dang,† Junqiao Zhuo, †,# Audrey Forticaux,† Zhoucheng Wang,‡,* and Song Jin†,* † Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States and ‡College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; #Institute of Analytical Chemistry, College of Chemical and Molecular Engineering, Peking University, Beijing 100871, China. Email: [email protected] (S.J.) and [email protected] (Z.W.) Supporting Figures and Tables Figure S1. Schematic illustration of the layered crystal structures of (A) NiGa layered double hydroxide (LDH) and (B) β-Ni(OH)2 (side-view) and the conversion process from NiGa LDH to β-Ni(OH)2. Step I: the Ga3+ ions in NiGa LDH layers react with OH- under hydrothermal conditions and form soluble S1 Ga[(OH)4]-, resulting in the formation of porous β-Ni(OH)2 layers; Step II: as the Ga3+ ions dissolve, the host layers are no longer positively charged, therefore, the charge-balancing anions will diffuse outward from between the layers, resulting in the transition from NiGa LDH to porous β-Ni(OH)2. After conversion, the basal d spacing (calculated from the PXRD) of the layered structures decreases from 7.8 Å (NiGa LDH nanoplates) to 4.6 Å [β-Ni(OH)2 porous nanosheets]. Figure S2. Low-magnification SEM images of as-grown (A) NiGa LDH nanoplates, (B) as-converted porous β-Ni(OH)2 nanosheets, and (C) β-Ni(OH)2 microplates on carbon paper. Table S1. Summary of the electrochemical properties of porous β-Ni(OH)2 nanosheets and β-Ni(OH)2 microplates. Catalyst η @ 10 mA cm-2 (mV vs. RHE) Tafel slope (mV dec-1) j0,geometric (mA cm-2) Cdl (μF cm-2) Relative surface area j0,normalized (mA cm-2) porous β-Ni(OH)2 nanoplates 415 68.1 0.317 107.3 3.94 0.081 β-Ni(OH)2 microplates 541 60.0 0.078 27.2 1 0.078 S2 Figure S3. (A) Photograph of the as-prepared samples showing the color changes from green [NiGa LDH and β-Ni(OH)2] to black (NiSe2). (B, C) Low-magnification SEM images of the as-converted porous NiSe2 nanosheets. Figure S4. (A) PXRD patterns of the β-Ni(OH)2 microplates after 20 h (black trace) and 42 h (red trace) conversion reactions in Se and NaBH4 solution, indicating the product contains both NiSe2 and βNi(OH)2. The stars (*) mark the diffraction peaks from carbon paper substrate. (B, C) Low- and highmagnification SEM images of the β-Ni(OH)2 microplates after 20 h conversion reaction. (D, E) Lowand high-magnification SEM images of the β-Ni(OH)2 microplates after 42 h conversion reaction. S3 Figure S5. (A) SEM image, (B) the corresponding EDS spectrum, and (C) PXRD pattern of NiSe2 nanosheets directly converted from NiGa LDH nanoplates. In this case, the etching of Ga3+ ions and the conversion of β-Ni(OH)2 to NiSe2 took place simultaneously because the NaBH4 also produces NaOH during the reaction. The pores in these as-obtained NiSe2 nanosheets are not very obvious, which is because the NiGa LDH precursor used here has a higher Ni:Ga ratio of 5.5:1. Figure S6. Illustration of the method for using Tafel plots for the extraction of the exchange current density (j0) of the porous NiSe2 nanosheets for HER catalysis under both acidic and basic conditions. The exchange current density (j0) was calculated by extrapolating the Tafel plots to the overpotential of S4 0 V. The log |j0| values for porous NiSe2 nanosheets at pH 0 and pH 14 are −2.19 and −1.41, respectively, and thus the corresponding j0 are 6.46 and 38.9 μA cm-2, respectively. Table S2. Comparison of the catalytic performance of the porous NiSe2 nanosheets reported herein with other recently reported high performance HER catalysts in both acidic and basic conditions. Catalyst Electrolyte η @ 10 mA cm-2 (mV vs. RHE) Tafel slope (mV dec-1) Exchange current density (μA cm-2) Ref. porous NiSe2 nanosheets 0.5 M H2SO4 135 37.2 6.46 this work NiSe2 thin film 0.5 M H2SO4 / 56.4~62.0 0.57~0.83 S1 CoSe2 nanoparticles 0.5 M H2SO4 137 42.1 4.9 ± 1.4 S2 CoSe2 nanoparticles 0.5 M H2SO4 140-270 31.2-61.1 / S3 FeSe2 thin film 0.5 M H2SO4 / 62.1~71.6 0.27~0.47 S1 CoS2 nanowires 0.5 M H2SO4 145 51.6 15.1 S4 FeS2 thin film 0.5 M H2SO4 / 56.4 0.144 S5 Fe1-xCoxS2/carbon nanotubes 0.5 M H2SO4 120 @ 20 mA cm-2 46 / S6 NiS2 thin film 0.5 M H2SO4 / 48.8 0.0191 S5 1T-WS2 nanosheets 0.5 M H2SO4 142 70 / S7 1T-MoS2 nanosheets 0.5 M H2SO4 195 43 / S8 amorphous MoSxCly 0.5 M H2SO4 160 46 / S9 porous CoP nanowires 0.5 M H2SO4 67 51 288 S10 WP2 submicroparticles 0.5 M H2SO4 161 57 17 S11 Ni2P nanoparticles 1 M H2SO4 ~120 87 / S12 MoSx/N-doped graphene 0.5 M H2SO4 140.6 105 / S13 C3N4@N-Graphene films 0.5 M H2SO4 80 49.1 430 S14 Co/N-riched carbon nanotubes 0.5 M H2SO4 260 80 10 S15 porous NiSe2 nanosheets 1 M KOH 184 76.6 38.9 this work Co/N-riched carbon nanotubes 1 M KOH 370 / / S15 Mo2C 1 M KOH ~ 192 54 3.8 S16 MoB 1 M KOH ~ 225 59 2.0 S16 porous CoP nanowires 1 M KOH 209 129 / S10 WP2 submicroparticles 1 M KOH 153 60 / S11 Ni2P nanoparticles 1 M KOH ~225 100 / S12 S5 Catalyst Electrolyte η @ 10 mA cm-2 (mV vs. RHE) Tafel slope (mV dec-1) Exchange current density (μA cm-2) Ref. Ni-Mo nanopowder/Ti foil 1 M NaOH < 100 / / S17 Note: / -- not reported in the literature References Cited in the Supporting Information S1. Kong, D.; Cha, J. J.; Wang, H.; Lee, H. R.; Cui, Y. Energy Environ. Sci. 2013, 6, 3553−3558. S2. Kong, D.; Wang, H.; Lu, Z.; Cui, Y. J. Am. Chem. Soc. 2014, 136, 4897−4900. S3. Zhang, H.; Yang, B.; Wu, X.; Li, Z.; Lei, L.; Zhang, X. ACS Appl. Mater. Interfaces 2015, 7, 1772−1779. S4. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136, 10053−10061. S5. Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. J. Phys. Chem. C 2014, 118, 21347−21356. S6. Yang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y.; Lin, M. C.; Guan, M.; Yang, J.; Chen, C. W.; Wang, Y. L.; Hwang, B. J.; Chen, C. C.; Dai, H. J. Am. Chem. Soc. 2015, 137, 1587−1592. S7. Lukowski, M. A.; Daniel, A. S.; English, C. R.; Meng, F.; Forticaux, A.; Hamers, R. J.; Jin, S. Energy Environ. Sci. 2014, 7, 2608−2613. S8. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. J. Am. Chem. Soc. 2013, 135, 10274−10277. S9. Zhang, X.; Meng, F.; Mao, Shun.; Ding, Q.; Shearer, M. J.; Faber, M. S.; Chen, J.; Hamers, R. J.; Jin, S. Energy Environ. Sci. 2015, 8, 862−868. S10. Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136, 7587−7590. S11. Xing, Z.; Liu, Q. Asiri, A. M.; Sun, X. ACS Catal. 2015, 5, 145−149. S12. Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X. Phys. Chem. Chem. Phys. 2014, 16, 5917−5921. S13. Chen, S.; Duan, J.; Tang, Y.; Jin, B.; Qiao, S. Z. Nano Energy 2015, 11, 11−18. S14. Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. ACS Nano 2015, 9, 931−940. S15. Zhou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Angew. Chem. Int. Ed. 2014, 53, 4372−4376. S16. Vrubel, H.; Hu, X. Angew. Chem. Int. Ed. 2012, 124, 12875−12878. S6 S17. McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B. ACS Catal. 2013, 3, 166−169. S7
© Copyright 2026 Paperzz