Vector equation of a line: Equation of a line through a given point

LINE
Vector equation of a line:
Equation of a line through a given point and parallel to the given vector:
Let π‘ŽΜ… be the position vector of the given point A.
Z
𝑏̅
Let 𝑙 be the line which passes through the
point A and is parallel to a given vector 𝑏̅.
A P
l
Let π‘ŸΜ… be the position vector of any
point P on the line 𝑙
π‘ŽΜ… π‘ŸΜ…
Μ…
Μ…Μ…Μ…Μ…
Then 𝐴𝑃 is parallel to the vector 𝑏
Y
Μ…Μ…Μ…Μ… = πœ†π‘Μ…, where πœ† is a scalar.
i.e. 𝐴𝑃
Μ…Μ…Μ…Μ… – Μ…Μ…Μ…Μ…
But Μ…Μ…Μ…Μ…
𝐴𝑃 = 𝑂𝑃
𝑂𝐴
X
O
Μ…
∴ πœ†π‘ = π‘ŸΜ… βˆ’ π‘ŽΜ…
Hence, the vector equation of the line is given by
π‘ŸΜ… = π‘ŽΜ… + πœ† 𝑏̅
…………..(1)
This equation is referred as parametric form of the line.
Remark:
(i)
If 𝑏̅ = π‘Ž1 𝑖̂ + 𝑏1 𝑗̂ + 𝑐1 π‘˜Μ‚, then π‘Ž1 , 𝑏1 , 𝑐1 are direction ratios of the line
and conversely, if π‘Ž1 , 𝑏1 , 𝑐1 are direction ratios of a line, then 𝑏̅ = π‘Ž1 𝑖̂ +
𝑏1 𝑗̂ + 𝑐1 π‘˜Μ‚ will be parallel to the line.
(ii) Cartesian form of an equation of a line. Let A ≑ (π‘₯1 , 𝑦1 , 𝑧1 ) be a point on
the line and π‘Ž, 𝑏, 𝑐 be direction ratios of the line. Consider any point
P(π‘₯, 𝑦, 𝑧) on the line.
Then π‘ŸΜ… = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚
π‘ŽΜ… = π‘₯1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 π‘˜Μ‚
and
𝑏̅ = π‘Ž1 𝑖̂ + 𝑏1 𝑗̂ + 𝑐1 π‘˜Μ‚
substituting these values in equation (1) and equating the coefficients of
𝑖̂, 𝑗̂, π‘˜Μ‚, we get
π‘₯ = π‘₯1 + πœ†π‘Ž1 , 𝑦 = 𝑦1 + πœ†π‘1 , 𝑧 = 𝑧1 + πœ†π‘1
……… (2)
These are the parametric equations of the line. Eliminating the parameter
πœ† from (2), we get
π‘₯βˆ’π‘₯1
π‘¦βˆ’π‘¦1
π‘§βˆ’π‘§1
=
=
…………..(3)
π‘Ž1
(iii)
(iv)
(v)
𝑏1
𝑐1
These are the Cartesian equations of the line.
If 𝑙, π‘š. 𝑛 are direction cosines of the line, the equations of the line are
π‘₯βˆ’π‘₯1
π‘¦βˆ’π‘¦1
π‘§βˆ’π‘§1
=
=
…………..(4)
𝑙
π‘š
𝑛
Vector equations of a line passing through the origin and parallel to the
vector 𝑏̅ is
π‘ŸΜ… = πœ† 𝑏̅
(since π‘ŽΜ… = 0)
Vector equation of a line passing through the point A(π‘ŽΜ…) and parallel to the
given vector 𝑏̅ can also be expressed as
(π‘ŸΜ… βˆ’ π‘ŽΜ…) × π‘Μ… = 0.
Page 1 of 11
(vi)
The coordinates of any point on the line
π‘₯βˆ’π‘₯1
π‘¦βˆ’π‘¦1
π‘§βˆ’π‘§1
=
=
are (π‘₯1 + πœ†π‘Ž1 , 𝑦1 + πœ†π‘1 , 𝑧1 + πœ†π‘1 ),
π‘Ž1
𝑏1
𝑐1
where πœ†πœ–π‘….
Vector equation of the line passing through two gives points:
Let A(π‘₯1 , 𝑦1 , 𝑧1 ) and B(π‘₯2 , 𝑦2 , 𝑧2 )
Z
l
be any two points on line 𝑙.
A
P
B
Let π‘ŽΜ… and 𝑏̅ be the position
vectors of two points A and
π‘ŽΜ….
π‘ŸΜ… . 𝑏̅.
B respectively.
Let π‘ŸΜ… be the position vector of any
O
Y
point P (π‘₯, 𝑦, 𝑧) on the line 𝑙.
Then Μ…Μ…Μ…Μ…
𝐴𝑃 = π‘ŸΜ… βˆ’ π‘ŽΜ… and
X
Μ…Μ…Μ…Μ… = 𝑏̅ βˆ’ π‘ŽΜ….
𝐴𝐡
The vectors Μ…Μ…Μ…Μ…
𝐴𝑃 and Μ…Μ…Μ…Μ…
𝐴𝐡 are collinear
Therefore
Μ…Μ…Μ…Μ…
Μ…Μ…Μ…Μ… )
𝐴𝑃 = πœ† (𝐴𝐡
∴
π‘ŸΜ… βˆ’ π‘ŽΜ… = πœ† (𝑏̅ βˆ’ π‘ŽΜ…)
∴
π‘ŸΜ… = π‘ŽΜ… + πœ† (𝑏̅-π‘ŽΜ…)
i.e. π‘ŸΜ… = (1 βˆ’ πœ†)π‘ŽΜ… + πœ† 𝑏̅
………….(1)
This is the vector equation of the line passing through the points A(π‘ŽΜ…) and B(𝑏̅).
Remark:
(i)
If π‘ŸΜ… = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚, π‘ŽΜ… = π‘₯1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 π‘˜Μ‚ and
𝑏̅ = π‘₯2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 π‘˜Μ‚
from (1), we get
π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚ = π‘₯1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 π‘˜Μ‚ + πœ† [(π‘₯2 βˆ’ π‘₯1 )𝑖̂ + (𝑦2 βˆ’ 𝑦1 )𝑗̂ + (𝑧2 βˆ’ 𝑧1 )π‘˜Μ‚]
Equating the coefficients of 𝑖̂, 𝑗̂, π‘˜Μ‚ we get,
π‘₯ = π‘₯1 + πœ†(π‘₯2 βˆ’ π‘₯1 ), 𝑦 = 𝑦1 + πœ†(𝑦2 βˆ’ 𝑦1 ), 𝑧 = 𝑧1 + πœ†(𝑧2 βˆ’ 𝑧1 ),
on eliminating πœ†, we obtain
π‘₯ βˆ’ π‘₯1
𝑦 βˆ’ 𝑦1
𝑧 βˆ’ 𝑧1
=
=
π‘₯2 βˆ’ π‘₯1 𝑦2 βˆ’ 𝑦1 𝑧2 βˆ’ 𝑧1
Which are the equations of the line in Cartesian form passing through two
points A (π‘₯1 , 𝑦1 , 𝑧1 ) and B(π‘₯2 , 𝑦2 , 𝑧2 ).
(ii) The equation π‘ŸΜ… = (1 βˆ’ πœ†)π‘ŽΜ… + πœ† 𝑏̅ is called the parametric vector equation of a
line passing through two points, where πœ† is parameter.
(iii) The vector equation of a line passing through two points A(π‘ŽΜ…) and B(𝑏̅) is also
given by (π‘ŸΜ… βˆ’ π‘ŽΜ…) × (𝑏̅ βˆ’ π‘ŽΜ…) = 0. This equation is also referred as nonparametric equation of the line.
(iv) If π‘ŸΜ… = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚
π‘ŽΜ… = π‘Ž1 𝑖̂ + 𝑏1 𝑗̂ + 𝑐1 π‘˜Μ‚ and 𝑏̅ = π‘Ž2 𝑖̂ + 𝑏2 𝑗̂ + 𝑐2 π‘˜Μ‚
Page 2 of 11
Then π‘ŸΜ… = (1 βˆ’ πœ†)π‘ŽΜ… + πœ† 𝑏̅ gives
π‘₯βˆ’π‘Ž1
π‘Ž2 βˆ’π‘Ž1
=
π‘¦βˆ’π‘1
𝑏2 βˆ’π‘1
=
π‘§βˆ’π‘1
𝑐2 βˆ’π‘1
=πœ†
This is the symmetric form of equation of a line.
Examples
1) Find the vector equation of the line through A(3, 4, -7) and
B (6, -1, 1). Also find the Cartesian form.
Sol: The line pass through the pt. A(3, 4, -7) and B(6, -1, 1)
Let π‘ŽΜ… and 𝑏̅ be the position vector of the points A and B.
π‘ŽΜ… = 3𝑖̂ + 4𝑗̂ βˆ’ 7π‘˜Μ‚ and 𝑏̅ = 6𝑖̂ βˆ’ 𝑗̂ + π‘˜Μ‚
𝑏̅ – π‘ŽΜ… = (6𝑖̂ βˆ’ 𝑗̂ + π‘˜Μ‚) – (3𝑖̂ + 4𝑗̂ βˆ’ 7π‘˜Μ‚)
𝑏̅ – π‘ŽΜ… = 3𝑖̂ βˆ’ 5𝑗̂ + 8π‘˜Μ‚
The vector equation of the line passing through the points A(π‘ŽΜ…) and B(𝑏̅) is
π‘ŸΜ… = π‘ŽΜ… + πœ†( 𝑏̅ – π‘ŽΜ…)
π‘ŸΜ… = (3𝑖̂ + 4𝑗̂ βˆ’ 7π‘˜Μ‚) + Ξ» (3𝑖̂ βˆ’ 5𝑗̂ + 8π‘˜Μ‚)
The Cartesian form of the equation of the line passing through
(π‘₯1 , 𝑦1 , 𝑧1 ) and (π‘₯2 , 𝑦2 , 𝑧2 ) is
π‘₯ βˆ’ π‘₯1
𝑦 βˆ’ 𝑦1
𝑧 βˆ’ 𝑧1
=
=
π‘₯2 βˆ’ π‘₯1 𝑦2 βˆ’ 𝑦1 𝑧2 βˆ’ 𝑧1
∴
π‘₯βˆ’3
6βˆ’3
i.e.
=
π‘₯βˆ’3
3
π‘¦βˆ’4
βˆ’1βˆ’4
=
π‘₯βˆ’4
βˆ’5
=
=
π‘§βˆ’(βˆ’7)
1βˆ’(βˆ’7)
𝑧+7
8
2) Find the equation of the line in vector form passing through the point (4, -2, 5)
and parallel to the vector 3𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚. Hence, find the equation in Cartesian form.
Sol: Given that the line pass through the point A(4, -2, 5) and
parallel to the vector 𝑏̅ = 3𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚.
Let a be the position vector of the point A
∴ π‘ŽΜ… = 4𝑖̂ βˆ’ 2𝑗̂ + 5π‘˜Μ‚
∴ The vector equation of line passing through the pt. A(π‘ŽΜ…) and
parallel to vector 𝑏̅ is
π‘ŸΜ… = π‘ŽΜ… + πœ†π‘Μ… where Ξ» is scalar
π‘ŸΜ… = (4𝑖̂ βˆ’ 2𝑗̂ + 5π‘˜Μ‚) + Ξ» (3𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚.)
If π‘ŸΜ… = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚ then
π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚ = (4𝑖̂ βˆ’ 2𝑗̂ + 5π‘˜Μ‚) + Ξ» (3𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚)
(π‘₯ βˆ’ 4)𝑖̂ + (𝑦 + 2)𝑗̂ + (𝑧 βˆ’ 5)π‘˜Μ‚ = 3πœ†π‘–Μ‚ βˆ’ πœ†π‘—Μ‚ + 2πœ†π‘˜Μ‚
Comparing the coefficients of 𝑖̂, 𝑗̂, π‘˜Μ‚ on both sides.
π‘₯ βˆ’ 4 = 3πœ†, 𝑦 + 2 = βˆ’πœ†, 𝑧 βˆ’ 5 = 2πœ†
Page 3 of 11
π‘₯βˆ’4
3
=
𝑦+2
βˆ’1
=
π‘§βˆ’5
2
=Ξ»
∴ Cartesian form of the equation of line is
π‘₯βˆ’4
3
=
𝑦+2
βˆ’1
=
π‘§βˆ’5
2
3) Find the equation of line passing through the point (5, 4, 3) and having direction
ratios -3, 4, 2.
Sol: Given that the line pass through the point A(5, 4, 3) and having
direction ratios -3, 4, 2
Let π‘ŽΜ… be the position vector of pt. A
π‘ŽΜ… = 5𝑖̂ + 4𝑗̂ + 3π‘˜Μ‚
Let 𝑏̅ be the vector parallel to the line whose direction ratios are
-3, 4, 2
𝑏̅ = βˆ’3𝑖̂ + 4𝑗̂ + 2π‘˜Μ‚
∴ The vector equation of the line passing through A(π‘ŽΜ…) and parallel
to 𝑏̅ is
π‘ŸΜ… = π‘ŽΜ… + πœ†π‘Μ…
π‘ŸΜ… = (5𝑖̂ + 4𝑗̂ + 3π‘˜Μ‚) + Ξ» (βˆ’3𝑖̂ + 4𝑗̂ + 2π‘˜Μ‚)
π‘₯βˆ’6
𝑦+4
π‘§βˆ’5
4) The Cartesian equation of line is
=
=
find the vector equation of the
2
7
3
line. (March 14)
Sol: The Cartesian equation of line is
π‘₯βˆ’6
𝑦+4
π‘§βˆ’5
=
=
2
7
3
∴ The line is passing through the point
A(6, -4, 5) and having direction ratios 2, 7, 3
Let π‘ŽΜ… be the position vector of the point A and 𝑏̅ be the vector
parallel to the line.
∴ π‘ŽΜ… = 6𝑖̂ βˆ’ 4𝑗̂ + 5π‘˜Μ‚, 𝑏̅ = 2𝑖̂ + 7𝑗̂ + 3π‘˜Μ‚
The vector equation of line is
π‘ŸΜ… = π‘ŽΜ… + πœ†π‘Μ…
π‘ŸΜ… = (6𝑖̂ βˆ’ 4𝑗̂ + 5π‘˜Μ‚) + Ξ» (2𝑖̂ + 7𝑗̂ + 3π‘˜Μ‚)
5) Find the vector equation of a line passing through the point (𝑖̂ + 2𝑗̂ + 3π‘˜Μ‚) and
perpendicular to the vector (𝑖̂ + 𝑗̂ + π‘˜Μ‚) and (2𝑖̂ βˆ’ 𝑗̂ + π‘˜Μ‚).
Sol: Let π‘ŽΜ… = 𝑖̂ + 2𝑗̂ + 3π‘˜Μ‚, ̅𝑏 = 𝑖̂ + 𝑗̂ + π‘˜Μ‚, ̅𝑐 = 2𝑖̂ βˆ’ 𝑗̂ + π‘˜Μ‚
The vector perpendicular to the vectors ̅𝑏 and ̅𝑐 is given by
𝑖̂
𝑗̂ π‘˜Μ‚
𝑏̅ × π‘Μ… = |1 1 1| = 𝑖̂(1 + 1) βˆ’ 𝑗̂(1 βˆ’ 2) + π‘˜Μ‚(βˆ’1 βˆ’ 2) = 2𝑖̂ + 𝑗̂ βˆ’ 3π‘˜Μ‚
2 βˆ’1 1
Since line is perpendicular to the vector 𝑏̅ and 𝑐̅ it is parallel to
𝑏̅ × π‘Μ….
Page 4 of 11
The vector equation of the line passing through A(π‘ŽΜ…) and parallel to 𝑏̅ × π‘Μ… is
π‘ŸΜ… = π‘ŽΜ… + πœ† (𝑏̅ × π‘Μ…)
∴ Vector equation of the required line is
π‘ŸΜ… = (𝑖̂ + 2𝑗̂ + 3π‘˜Μ‚) + Ξ» (2𝑖̂ + 𝑗̂ βˆ’ 3π‘˜Μ‚ ).
6) Find the vector equation of the line passing through the point
(-1, -1, 2) and parallel to the line 2π‘₯ βˆ’ 2 = 3𝑦 + 1 = 6𝑧 βˆ’ 2
Sol: Let π‘ŽΜ… be the position vector of the point A(-1, -1, 2)
∴ π‘ŽΜ… = βˆ’π‘–Μ‚ βˆ’ 𝑗̂ + 2π‘˜Μ‚
Given equation of line is
2π‘₯ βˆ’ 2 = 3𝑦 + 1 = 6𝑧 βˆ’ 2
1
1
2(π‘₯ βˆ’ 1) = 3 (𝑦 + ) = 6(𝑧 βˆ’ )
π‘₯βˆ’1
1
2
=
𝑦+
1
3
1
3
=
3
1
π‘§βˆ’
1
6
3
3
∴ Direction ratios are
1 1 1
, , i.e. 3, 2, 1
2 3 6
Let 𝑏̅ be the vector parallel to required line
𝑏̅ = 3𝑖̂ + 2𝑗̂ + π‘˜Μ‚
∴ The vector equation of the line passing through A(π‘ŽΜ…) and parallel to 𝑏̅ is
π‘ŸΜ… = π‘ŽΜ… + πœ†π‘Μ…
π‘ŸΜ… = (βˆ’π‘–Μ‚ βˆ’ 𝑗̂ + 2π‘˜Μ‚) + Ξ» (3𝑖̂ + 2𝑗̂ + π‘˜Μ‚ )
7) The Cartesian equation of a line is 3π‘₯ βˆ’ 1 = 6𝑦 + 2 = 1 βˆ’ 𝑧. Find the direction
ratios and write its equation in vector form.
Sol: The Cartesian equation of a line is
3π‘₯ βˆ’ 1 = 6𝑦 + 2 = 1 βˆ’ 𝑧
1
1
3 (π‘₯ βˆ’ ) = 6 (𝑦 + ) = βˆ’(𝑧 βˆ’ 1)
x βˆ’1/3
1/3
3
=
y+1/3
1/6
=
3
z βˆ’1
βˆ’1
1
1
3
3
∴ The line pass through the point A( , βˆ’ , 1) and having
1 1
Direction ratios , , βˆ’1 i.e. 2, 1, βˆ’6
3 6
Let π‘ŽΜ… be the position vector of the point A and 𝑏̅ be the vector
parallel to the line.
1
1
π‘ŽΜ… = 𝑖̂ βˆ’ 𝑗̂ + π‘˜Μ‚ and 𝑏̅ = 2𝑖̂ + 𝑗̂ βˆ’ 6π‘˜Μ‚
3
3
∴ vector equation is
π‘ŸΜ… = π‘ŽΜ… + πœ†π‘Μ…
1
1
r = ( 𝑖̂ βˆ’ 𝑗̂ + π‘˜Μ‚) + Ξ» (2𝑖̂ + 𝑗̂ βˆ’ 6π‘˜Μ‚)
3
3
Page 5 of 11
8) Show that the points whose position vectors are 5𝑖̂ + 5π‘˜Μ‚ , βˆ’4𝑖̂ + 3𝑗̂ βˆ’ π‘˜Μ‚ and 2𝑖̂ +
𝑗̂ + 3π‘˜Μ‚ are collinear.
Sol: Let A, B, C be the points with position vector π‘ŽΜ…, 𝑏̅, 𝑐̅
π‘ŽΜ… = 5𝑖̂ + 5π‘˜Μ‚, 𝑏̅ = βˆ’4𝑖̂ + 3𝑗̂ βˆ’ π‘˜Μ‚, 𝑐̅ = 2𝑖̂ + 𝑗̂ + 3π‘˜Μ‚
vector equation of line AB is
π‘ŸΜ… = π‘ŽΜ… + πœ†(𝑏̅ βˆ’ π‘ŽΜ…)
𝑏̅ βˆ’ π‘ŽΜ… = βˆ’4𝑖̂ + 3𝑗̂ βˆ’ π‘˜Μ‚) – (5𝑖̂ + 5π‘˜Μ‚) = βˆ’9𝑖̂ + 3𝑗̂ βˆ’ 6π‘˜Μ‚
∴ π‘ŸΜ… = (5𝑖̂ + 5π‘˜Μ‚) + Ξ» (βˆ’9𝑖̂ + 3𝑗̂ βˆ’ 6π‘˜Μ‚) …..(1)
Now the points A, B, C are collinear if the point C lies on the line AB i.e. the
position vector 𝑐̅ of 𝐢 must satisfy the equation (i) for some scalar Ξ».
∴
Replacing π‘ŸΜ… by 𝑐̅ in equation (1) we get
2𝑖̂ + 𝑗̂ + 3π‘˜Μ‚ = (5𝑖̂ + 5π‘˜Μ‚) + Ξ» (βˆ’9𝑖̂ + 3𝑗̂ βˆ’ 6π‘˜Μ‚)
2𝑖̂ + 𝑗̂ + 3π‘˜Μ‚ βˆ’ (5𝑖̂ + 5π‘˜Μ‚) = Ξ» (βˆ’9𝑖̂ + 3𝑗̂ βˆ’ 6π‘˜Μ‚)
βˆ’3𝑖̂ + 𝑗̂ βˆ’ 2π‘˜Μ‚ = Ξ» (βˆ’9𝑖̂ + 3𝑗̂ βˆ’ 6π‘˜Μ‚)
1
(βˆ’9𝑖̂ + 3𝑗̂ βˆ’ 6π‘˜Μ‚) = Ξ» (βˆ’9𝑖̂ + 3𝑗̂ βˆ’ 6π‘˜Μ‚)
3
∴
1
Ξ»=
3
Thus the points A,B, C are collinear.
1)
2)
3)
4)
Examples for practice
Find the vector equation of a line which passes through the point with position
vector 4𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚ and is in the direction of βˆ’2𝑖̂ + 𝑗̂ + π‘˜Μ‚. Also reduce the
equation to Cartesian form.
Find the vector equation of the line passing through the point
with position vector 2𝑖̂ + 𝑗̂ βˆ’ π‘˜Μ‚ and parallel to the line joining the points β€“βˆ’π‘–Μ‚ +
𝑗̂ + 4π‘˜Μ‚ and ̂𝑖 + 2𝑗̂ + 2π‘˜Μ‚. Also find the Cartesian form of this equation.
Find the Cartesian equation of line passing through the points A(4, 2, 1) and
B (2, -1, 3). Also, reduce it to vector form.
π‘₯βˆ’1
π‘¦βˆ’3
𝑧
π‘₯βˆ’2
𝑦+1
π‘§βˆ’4
Find the angle between the lines
=
= and
=
=
.
4
1
8
2
2
1
P(𝛼̅))
Distance of a point from a line:
Let P (𝛼̅) be a point and
Let π‘ŸΜ… = π‘ŽΜ… + πœ†π‘Μ… be the vector
equation of a line.
A(π‘ŽΜ…)
The line passes through a point A(π‘ŽΜ…).
Let M be the foot of the perpendicular drawn from the point
P (𝛼̅) on the line π‘ŸΜ… = π‘ŽΜ… + πœ†π‘Μ….
Μ…Μ…Μ…Μ…Μ… βˆ₯ 𝑏̅
Now 𝐴𝑀
Μ…Μ…Μ…Μ…Μ… = πœ†π‘Μ…
∴ 𝐴𝑀
Page 6 of 11
M
𝑏̅.
and 𝑙(AM) =
Μ…Μ…Μ…Μ….𝐴𝑀
Μ…Μ…Μ…Μ…Μ…
𝐴𝑃
Μ…Μ…Μ…Μ…Μ…
|𝐴𝑀 |
=
Μ…Μ…Μ…Μ…Μ…
(𝛼
Μ… βˆ’π‘ŽΜ…).𝐴𝑀
Μ…Μ…Μ…Μ…Μ…
|𝐴𝑀|
=
(𝛼
Μ… βˆ’π‘ŽΜ…).𝑏̅
|𝑏̅|
……………..(1)
Now, βˆ†AMP is right angled triangle.
∴
Μ…
(𝛼
Μ…Μ…Μ…Μ…)2 – (𝐴𝑀
Μ…Μ…Μ…Μ…Μ…)2 = |𝛼̅ βˆ’ π‘ŽΜ…|2 βˆ’ [ Μ… βˆ’π‘ŽΜ…).𝑏]2
Μ…Μ…Μ…Μ…Μ…)2 = (𝐴𝑃
(𝑃𝑀
|𝑏̅|
∴
Μ… βˆ’π‘Ž
Μ… ).𝑏
(𝛼
Μ…βˆ’π‘Ž
Μ… |2 βˆ’ [ Μ… ]
𝑃𝑀 = √|𝛼
Μ… 2
|𝑏|
Hence, distance of a point P (𝛼) from a line is π‘ŸΜ… = π‘ŽΜ… + πœ†π‘Μ….
Μ…βˆ’π‘Ž
Μ… |2 βˆ’ [
is √|𝛼
Μ… 2
Μ… βˆ’π‘Ž
Μ… ).𝑏
(𝛼
Μ…|
|𝑏
]
Cartesian form:
Let P (π‘₯ β€² , 𝑦 β€² , 𝑧′) be a given point and
P (π‘₯ β€² , 𝑦 β€² , 𝑧′)
π‘₯βˆ’π‘₯1
π‘¦βˆ’π‘¦1
π‘§βˆ’π‘§1
Let
=
=
be given line.
π‘Ž
𝑏
𝑐
Let M be the foot of the perpendicular
drawn from P(π‘₯ β€² , 𝑦 β€² , 𝑧′)
A
B
π‘₯βˆ’π‘₯1
π‘¦βˆ’π‘¦1
π‘§βˆ’π‘§1
On the line
=
=
π‘Ž
𝑏
𝑐
Let coordinates of M be (π‘₯1 + πœ†π‘Ž, 𝑦1 + πœ†π‘, 𝑧1 + πœ†π‘) then direction ratios of
PM are
(π‘₯1 + πœ†π‘Ž βˆ’ π‘₯ β€² , 𝑦1 + πœ†π‘ βˆ’ 𝑦 β€² , 𝑧1 + πœ†π‘ βˆ’ 𝑧′)
The direction ratios of AB are a,b,c.
PM is perpendicular to AB
π‘Ž(π‘₯β€²βˆ’π‘₯ )+𝑏(π‘¦β€²βˆ’π‘¦ )+𝑐(π‘§β€²βˆ’π‘§ )
1
1
1
βˆ΄πœ†=
π‘Ž2 +𝑏2 +𝑐 2
Putting this value of πœ† in (π‘₯1 + πœ†π‘Ž, 𝑦1 + πœ†π‘, 𝑧1 + πœ†π‘) we obtain coordinate of
M, and using distance formula we get the length PM.
Skew Lines:
If two lines in space interest at a point,
then the shortest distance between them is zero.
Also, if two lines in space are parallel,
then the shortest distance between them
is the perpendicular distance between them.
Further, in space, there are lines
which are neither intersecting nor parallel.
In fact, such pair of lines are
called non-coplanar or skew lines.
Page 7 of 11
Distance between skew lines:
𝑙 1 and 𝑙 2 are two skew lines therefore there is only one line perpendicular to each
of lines 𝑙1 and 𝑙 2 which is known as the line of shortest distance. Here distance PQ is
called to be shortest distance.
Let 𝑙 1 and 𝑙 2 be two lines whose equations are
π‘ŸΜ… = π‘ŽΜ…1 + πœ†π‘Μ…1 and π‘ŸΜ… = π‘ŽΜ…2 + πœ†π‘Μ…2 respectively.
∴ 𝑙 1 passes through A(π‘ŽΜ…1 ) and 𝑙 2 passes through B (π‘ŽΜ…2 )).
Also, 𝑙 1 and 𝑙 2 are parallel to 𝑏̅1 and 𝑏̅1 respectively.
Μ…Μ…Μ…Μ…is perpendicular to both 𝑙 1 and 𝑙 2
𝑃𝑄
Μ…Μ…Μ…Μ… is parallel to 𝑏̅1 × π‘Μ…2 .
∴ 𝑃𝑄
Μ… Μ…
Μ…Μ…Μ…Μ…, then 𝑛̂ = ± 𝑏1×𝑏2
Let 𝑛̂ be a unit vector along 𝑃𝑄
|𝑏̅1 ×𝑏̅2 |
Μ…Μ…Μ…Μ… = Projection of 𝐴𝐡
Μ…Μ…Μ…Μ… on PQ
∴ 𝑃𝑄
Μ…Μ…Μ…Μ… = Μ…Μ…Μ…Μ…
∴ 𝑃𝑄
𝐴𝐡. 𝑛̂
(π‘ŽΜ…2 βˆ’π‘ŽΜ…1 ).(𝑏1 ×𝑏̅2 )
𝑏̅1 ×𝑏̅2
=
|𝑏̅1 ×𝑏̅2 |
|𝑏̅1 ×𝑏̅2 |
(π‘ŽΜ… βˆ’π‘ŽΜ… ).(𝑏 ×𝑏̅ )
PQ = | 2 Μ…1 Μ… 1 2 |
|𝑏1 ×𝑏2 |
= (π‘ŽΜ…2 βˆ’ π‘ŽΜ…1 ).
Hence, distance
Cartesian form: The shortest distance between two skew lines
π‘₯βˆ’π‘₯1
π‘¦βˆ’π‘¦1
π‘§βˆ’π‘§1
π‘₯βˆ’π‘₯2
π‘¦βˆ’π‘¦2
π‘§βˆ’π‘§2
=
=
and
=
=
is
π‘Ž1
|
𝑏1
𝑐1
π‘₯2 βˆ’ π‘₯1
| π‘Ž1
π‘Ž2
π‘Ž2
𝑦2 βˆ’ 𝑦1
𝑏1
𝑏2
𝑏2
𝑧2 βˆ’ 𝑧1
𝑐1 |
𝑐2
𝑐2
|
|√(𝑏1 𝑐2 βˆ’ 𝑏2 𝑐1 )2 + (𝑐1 π‘Ž2 βˆ’ 𝑐2 π‘Ž1 )2 +(π‘Ž1 𝑏2 βˆ’ π‘Ž2 𝑐1 )2 |
Distance between parallel lines:
If two lines 𝑙1 and 𝑙2 are parallel,
then they are coplanar.
Let the lines be given by
π‘ŸΜ… = π‘ŽΜ…1 + πœ†π‘Μ… and
……………(1)
Μ…
π‘ŸΜ… = π‘ŽΜ…2 + πœ‡π‘
…………..(2)
where π‘ŽΜ…1 is the position vector of a
𝑏̅
B(π‘ŽΜ…2 )
point A on 𝑙1 and π‘ŽΜ…2 be the position vector
𝑙2
of a point B on 𝑙2
As 𝑙1 , 𝑙2 are coplanar, if the foot of
the perpendicular from B on the line 𝑙1 is M,
Figure 9.7
then the distance between the lines 𝑙1 and 𝑙2 is
|BM|.
𝑙1
Let πœƒ be the angle between
A(π‘ŽΜ…1 )
M
Μ…Μ…Μ…Μ… and 𝑏̅
The vectors 𝐴𝐡
Μ…Μ…Μ…Μ… | sin πœƒ)𝑛̂
Thus, 𝑏̅ × Μ…Μ…Μ…Μ…
𝐴𝐡 = (|𝑏̅| |𝐴𝐡
……………….(3)
Page 8 of 11
Where 𝑛̂ is unit vector perpendicular to
the plane of 𝑏̅ and Μ…Μ…Μ…Μ…
𝐴𝐡
𝐡𝑀
𝐡𝑀
Μ…Μ…Μ…Μ… | sin πœƒ = BM
From triangle AMB, sin πœƒ =
= Μ…Μ…Μ…Μ… ∴ |𝐴𝐡
𝐴𝐡
|𝐴𝐡 |
Now, Μ…Μ…Μ…Μ…
𝐴𝐡 = π‘ŽΜ…2 βˆ’ π‘ŽΜ…1
Therefore, from (3), we get
𝑏̅ × (π‘ŽΜ…2 βˆ’ π‘ŽΜ…1 )
=
|𝑏̅| BM 𝑛̂
i.e.
|𝑏̅ x (π‘ŽΜ…2 βˆ’ π‘ŽΜ…1 )|
=
|𝑏̅| BM
Hence, the distance between the parallel lines is d where
d = BM = |
𝑏̅ × (π‘ŽΜ…2 βˆ’π‘ŽΜ…1 )
|
|𝑏̅ |
= |(π‘ŽΜ…2 βˆ’ π‘ŽΜ…1 ) × π‘Μ‚|
Remark: The lines are intersecting, if shortest distance is zero.
π‘₯2 βˆ’ π‘₯1 𝑦2 βˆ’ 𝑦1 𝑧2 βˆ’ 𝑧1
𝑏1
𝑐1 | = 0
i.e. | π‘Ž1
π‘Ž2
𝑏2
𝑐2
Examples
1) Find the length of the perpendicular from (2, βˆ’3, 1) to the line
π‘₯+1
π‘¦βˆ’3
𝑧+2
=
=
.
2
3
βˆ’1
Sol: Let M be the foot of perpendicular drawn from the
point P(2, βˆ’3, 1) to the given line
The co-ordinate of any point on the line
π‘₯+1
π‘¦βˆ’3
𝑧+2
=
=
are 2Ξ» – 1, 3Ξ» +3, βˆ’Ξ» βˆ’2
2
3
βˆ’1
Let M ≑ (2Ξ» βˆ’1, 3Ξ»+3, βˆ’Ξ» βˆ’2) …………… (i)
Direction ratios PM are
2Ξ» βˆ’1βˆ’2,
3Ξ» +3+3,
βˆ’Ξ» βˆ’2βˆ’1
i.e. 2Ξ» βˆ’3, 3Ξ» +6,
βˆ’Ξ» βˆ’3
Direction ratios of the given line are 2, 3, βˆ’1.
Since PM is perpendicular to the given line.
2(2Ξ»βˆ’3) + 3 (3Ξ»+6) – 1 (βˆ’Ξ»βˆ’3) = 0
4Ξ»βˆ’6 + 9Ξ»+18 + Ξ»+3 = 0
14Ξ»+15 = 0
βˆ’15
Ξ»=
14
βˆ’15
Putting Ξ» =
M≑(
in (i) we get
14
βˆ’44 βˆ’3 βˆ’13
14
,
14
,
14
βˆ’44
∴ PM = √(
14
)
βˆ’72 2
= √(
2
βˆ’3
βˆ’ 2) + (
14
39 2
2
βˆ’13
+ 3) + (
14
βˆ’27 2
) + (14) + ( 14 )
14
Page 9 of 11
2
βˆ’ 1)
(|𝑛̂|=1)
√5184+1521+729
14
√7334
=
PM =
14
units
2) Find the shortest distance between the lines
π‘ŸΜ… = (4𝑖̂ βˆ’ 𝑗̂) +Ξ» (𝑖̂ + 2𝑗̂ βˆ’ 3π‘˜Μ‚ ) and π‘ŸΜ… = (𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚) ) + πœ‡ (𝑖̂ + 4𝑗̂ βˆ’ 5π‘˜Μ‚)).
Sol: We know that the shortest distance between the lines
Μ…π‘Ÿ = π‘ŽΜ…1 + πœ†π‘Μ…1 and
……………(1)
Μ…Μ…Μ…
π‘ŸΜ… = π‘ŽΜ…2 + πœ†π‘2
is
𝑑=|
Μ… ×𝑏
Μ… ).(π‘Ž
Μ…1)
(𝑏
1
2 Μ… 2 βˆ’π‘Ž
|
Μ…
Μ…
|𝑏1 ×𝑏2 |
Here Μ…Μ…Μ…
π‘Ž1 = 4𝑖̂ βˆ’ 𝑗̂ , Μ…Μ…Μ…
π‘Ž2 = 𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚
𝑏̅1 = 𝑖̂ + 2𝑗̂ βˆ’ 3π‘˜Μ‚ , Μ…Μ…Μ…
𝑏2 = 𝑖̂ + 4𝑗̂ βˆ’ 5π‘˜Μ‚
𝑖̂
𝑏̅1 × π‘Μ…2 = |1
1
π‘˜Μ‚
βˆ’3| = 𝑖̂(βˆ’10 + 12) – 𝑗̂ (βˆ’5 + 3) + π‘˜Μ‚ (4 βˆ’ 2)
βˆ’5
𝑗̂
2
4
= 2𝑖̂ + 2𝑗̂ + 2π‘˜Μ‚
π‘ŽΜ…2 βˆ’ π‘ŽΜ…1 = (𝑖̂ βˆ’ 𝑗̂ + 2π‘˜Μ‚ ) – (4𝑖̂ βˆ’ 𝑗̂) = βˆ’3𝑖̂ + 2π‘˜Μ‚
Μ…1 × π‘Μ…2 ). (π‘ŽΜ…2 βˆ’ π‘ŽΜ…1 ) = (2𝑖̂ + 2𝑗̂ + 2π‘˜Μ‚). (βˆ’3𝑖̂ + 2π‘˜Μ‚)
(𝑏
= 2(βˆ’3) + 2(0) + 2(2)
= βˆ’6 + 4
= βˆ’2
2
|𝑏̅1 × π‘Μ…2 | = √(2) + (2)2 + (2)2
= √4 + 4 + 4 = 2 √3
βˆ’2
1
∴ shortest distance = | | =
units.
2√3
√3
3) Find the shortest distance between the lines
π‘₯+1
𝑦+1
𝑧+1
π‘₯βˆ’3
π‘¦βˆ’5
π‘§βˆ’7
=
=
and
=
=
.(Oct.13)
7
βˆ’6
1
1
βˆ’2
1
Sol: shortest distance between the lines
π‘₯βˆ’π‘₯1
π‘¦βˆ’π‘¦1
π‘§βˆ’π‘§1
π‘₯βˆ’π‘₯2
π‘¦βˆ’π‘¦2
π‘§βˆ’π‘§2
=
=
and
=
=
is
π‘Ž1
|
𝑏1
𝑐1
π‘Ž2
π‘₯2 βˆ’ π‘₯1
| π‘Ž1
π‘Ž2
𝑏2
𝑦2 βˆ’ 𝑦1
𝑏1
𝑏2
𝑐2
𝑧2 βˆ’ 𝑧1
𝑐1 |
𝑐2
|
|√(𝑏1 𝑐2 βˆ’ 𝑏2 𝑐1 )2 + (𝑐1 π‘Ž2 βˆ’ 𝑐2 π‘Ž1 )2 +(π‘Ž1 𝑏2 βˆ’ π‘Ž2 𝑏1 )2 |
Given equations are
π‘₯+1
7
=
𝑦+1
βˆ’6
=
𝑧+1
1
and
π‘₯βˆ’3
1
=
π‘¦βˆ’5
Page 10 of 11
βˆ’2
=
π‘§βˆ’7
1
∴ π‘₯1 = βˆ’1,
𝑦1 = βˆ’1, 𝑧1 = βˆ’1, π‘₯2 = 3, 𝑦2 = 5, 𝑧2 = 7, π‘Ž1 = 7, 𝑏1 = βˆ’6,
𝑐1 = 1, π‘Ž2 = 1, 𝑏2 = βˆ’2, 𝑐2 = 1
π‘₯2 βˆ’ π‘₯1
| π‘Ž1
π‘Ž2
𝑦2 βˆ’ 𝑦1 𝑧2 βˆ’ 𝑧1
4 6 8
𝑏1
𝑐1 | = |7 βˆ’6 1|
𝑏2
𝑐2
1 βˆ’2 1
= 4(βˆ’6 + 2) βˆ’ 6(7 βˆ’ 1) + 8(βˆ’14 + 6)
= βˆ’16 βˆ’ 36 βˆ’ 64 = βˆ’116
(𝑏1 𝑐2 βˆ’ 𝑏2 𝑐1 )2 + (𝑐1 π‘Ž2 βˆ’ 𝑐2 π‘Ž1 )2 +(π‘Ž1 𝑏2 βˆ’ π‘Ž2 𝑏1 )2
= (βˆ’6 + 2)2 + (1 βˆ’ 7)2 + (βˆ’14 + 6)2 = 16 + 36 + 64 = 116
βˆ’116
Shortest distance = |
| = √116 units.
√116
4) If the lines
Sol: The lines
π‘₯βˆ’1
=
2
π‘₯βˆ’π‘₯1
π‘Ž1
Given equations are
∴ π‘₯1 = 1,
𝑦+1
=
=
π‘§βˆ’1
and
π‘₯βˆ’3
3
4
π‘¦βˆ’π‘¦1
π‘§βˆ’π‘§1
π‘¦βˆ’π‘˜
𝑧
= interest then find the value of k.
2
π‘₯βˆ’π‘₯2
1
π‘¦βˆ’π‘¦2
=
𝑦+1
3
=
π‘§βˆ’1
4
and
π‘₯βˆ’3
1
=
π‘¦βˆ’π‘˜
2
=
𝑧
1
𝑦1 = βˆ’1, 𝑧1 = 1, π‘₯2 = 3, 𝑦2 = π‘˜, 𝑧2 = 0, π‘Ž1 = 2, 𝑏1 = 3,
𝑐1 = 4, π‘Ž2 = 1, 𝑏2 = 2, 𝑐2 = 1
Since the line intersect
2 π‘˜ + 1 βˆ’1
|2
3
4 |=0
1
2
1
2(3 βˆ’ 8) βˆ’ (π‘˜ + 1)(2 βˆ’ 4) βˆ’ 1(4 βˆ’ 3) = 0
βˆ’10 βˆ’ (π‘˜ + 1)(βˆ’2) βˆ’ 1 = 0
2π‘˜ βˆ’ 9 = 0
π‘˜=
π‘§βˆ’π‘§
2
=
and
=
=
intersect if
𝑏1
𝑐1
π‘Ž2
𝑏2
𝑐2
π‘₯2 βˆ’ π‘₯1 𝑦2 βˆ’ 𝑦1 𝑧2 βˆ’ 𝑧1
𝑏1
𝑐1 | = 0
| π‘Ž1
π‘Ž2
𝑏2
𝑐2
π‘₯βˆ’1
2
1
=
9
2
Page 11 of 11