Introduction to Read-Muller Logic 2002. 10. 8. Ahn, Ki-yong Positive Polarity Reed-Muller Form f(x1,x2,…xn) = a0 ^ a1x1 ^ a2x2 ^…^ anxn ^ … ^ amx1x2x3…xn All variables are positive polarities There is only 1 PPRM EX) F = 1 ^ x1 ^ x2 ^ x1x2 Fixed Polarity Reed-Muller Form Each variable has positive or negative polarity Polarity of variable is fixed There is only 2n FPRMs EX) F = 1 ^ x1 ^ x2’ ^ x1x2’ Generalized Reed-Muller Forms Each variable can have any polarity Polarity of variable is not fixed n-1 n2 There is only 2 GRMs EX) F = 1 ^ x1 ^ x2’ ^ x1’x2’ Fundamental Expansions Shannon f(x1,x2,…,xn) = x1’f0(x2,…xn) ^ x1f1(x2,…xn) Positive Expansion – S Davio Expansion – pD f(x1,x2,…,xn) = 1 f0(x2,…xn) ^ x1f2(x2,…xn) f2 = f0 ^ f1 S X1’ X1 1 pD X1 Fundamental Expansions(2) Negative Davio Expansion – nD f(x1,x2,…,xn) = 1 f0(x2,…xn) ^ x1’f2(x2,…xn) Generalized Davio Expansion – D f(x1,x2,…,xn) = 1 f0(x2,…xn) ^ x1f2(x2,…xn) x1 means both negative and positive nD 1 X1’ 1 D X1 Kronecker Forms - KRO S a a’ pD pD 1 nD 1 Using c’ 1 b 1 nD nD c’1 b nD c’ 1 c’ S, pD, nD for each variable The same expansion must be used for the same variable Pseudo-KRO Form - PDSKRO S a a’ S pD 1 nD 1 Using c’ c’ b b’ S pD c1 b pD c 1 S, pD, nD for each variable c S/D Tree S a a’ D 1 a’ Using S 1 b b’ D S D c c’ a’c a’bc’ c 1 a’bc ab’ c 1 ab’c ab b D c abc Shannon(S) and Generalized Davio(D) Inclusive Forms for Two Variables N=1 S a’ a S N=2 a’ a S N=2 a’ a S N=4 a’ a D D S D D S S b 1 b b’ b 1 b 1 b b’ b 1 b b’ b b’ a’b’ a’b ab’ ab a’b’ a’b a ab a’ a’b ab’ ab a’ a’b a ab S D 1 b’ b’ S N=4 a 1 D N=8 a 1 D N=8 a D N=16 1 a D S D D S S D b 1 b b’ b 1 b b b’ b b’ b 1 b 1 b ab’ ab b’ b a ab 1 b ab’ ab 1 b a ab NIF = (1+2+2+4)+(4+8+8+16) = 45
© Copyright 2026 Paperzz