Evolution of chloroplast matK genes among lower land plants Shu-Lan Chuang (莊樹嵐) and Jer-Ming Hu (胡哲明) Institute of Ecology and Evolutionary Biology, National Taiwan University Abstract NictmatK The introns of chloroplast trnKUUU contain an open reading frame denoted as matK. The putative gene product MatK is the only one having maturase function in chloroplasts. AratmatK (A) AtrbmatK (B) SpiomaK Gymnosperms Basal angiosperms LotjmatK CalfmatK However, only those chloroplasts of land plants and higher green algae such as Characeae have introns in their trnK genes, but not in other green algae examined. Chloroplast matK genes are indispensable since in nonphotosynthetic parasitic plant, Epifagus virginiana, the chloroplast matK is functional even being a free-standing from with dismissed trnK exons. Gnetophytes MaggmatK AmbtmatK Axis 2 Axis 2 Monocots Gymnosperms* Green algae OrysmatK TriamatK ZeammatK PintmatK CycpmatK GinbmatK AdicmatK Ferns and allies Bryophytes OphpmatK Epifagus SeldmatK Axis 1 Axis 1 LyccmatK PsinmatK NictmatK 60.00 AratmatK (C) AtrbmatK SpiomaK OenematK LotjmatK 55.00 Codon usage analysis showed that the use of codons in matK is in congruent with the average use of chloroplast genomes, showing a bias that can be explained by constraints on GC contents. The result of correspondence analysis suggests the codon usage of chloroplast matK has some properties that is correlated with their evolutionary relationship. CalfmatK MaggmatK AmbtmatK EpivmatK 50.00 OrysmatK TriamatK Nc ZeammatK PintmatK 45.00 PinkmatK CycpmatK GinbmatK Fig 4. Codon usage analysis. (A, B) Correspondence analysis of codon usage. Major groupings are indicated. (C) Nc-plot shows the bias of matK codon usage is correlated to GC contents. GnepmatK 40.00 Gnemmat EphsmatK Lycopodiella cernua and Selaginella doederleinii are placed into different group in matK phylogenetic analysis, but the incongruence is likely due to the disputable sequence alignment, which causes long branch attraction that will affect phylogenetic inference. Nonetheless, the result showed that Pinus, Ginkgo, Cycas from a monophyletic group, which is sistered to angiosperms. Together they form a clade that is sistered to Gnetales. AdicmatK OphpmatK 35.00 SeldmatK LyccmatK PsinmatK PhypmatK 30.00 0.000 MarpmatK 0.050 0.100 0.150 0.200 0.250 0.300 0.350 GC3s ChagmatK ChacmatK 0.92 Basal eudicots 90 0.99 Basal eudicots 1.00 73 86 1.00 0.61 84 1.00 75 O (B) Genomic DNA RT-PCR L Monocots 1.00 Basal angiosperms Results O L O L O L O L RT-PCR O 100 Genomic DNA Monocots Basal angiosperms 0.52 Selaginella doederleinii Conifers 100 M M R Core eudicots 1.00 Core eudicots L PinkmatK Monocots The chloroplasts of Psilotum, moss and liverworts all have trnK5’-matKtrnK3’ structure, but it is found that matK is a pseudogene in hornwort Anthoceros formosae. We found a clear trnK5’-matK-trnK3’ structure in Ophioglossum petiolatum, Lycopodiella cernua and Selaginella doederleinii. RT-PCR results showed matK genes are expressed in Ophioglossum petiolatum and Lycopodiella cernua, but no signal detected in Selaginella doederleinii. So the function and expression of matK are not consistent in lower land plants. (A) OenematK R I I M M R R I I M R I1 I 2 M R I1 I2 1.00 Cycads 92 99 1.00 Ginkgo 100 Conifers 1.00 Ginkgo 99 1.00 100 1.00 Gnetophytes 99 500bp 96 Cycads 0.56 100 1.00 Gnetophytes 100 1.00 500bp 1.00 82 1.00 100 89 Lycophytes and ferns 1.00 Lycophytes and ferns Fig. 2. Detection of chloroplast matK expression by RT-PCR. (A) Results from Lycopodiella cernua (L) and Ophioglossum petiolatum (O). On the right showing a PCR of genomic DNA as controls. (B) Results from Selaginella doederienii, and a PCR of genomic DNA is on the right. Chloroplast matKs are expressed in L. cernua and O. petiolatum, but not in S. doederienii. Abbreviations: M (matK), R (rbcL), I and I1 (intergenetic spacer: rbcL/atpB), I2 (trnL intron). Bryophytes (A) Maximum parsimony tree rbcL 2 3 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 4 5 6 No intron pseudogene Nicotiana tabacum Atropa belladonna Epifagus virginiana Spinacia oleracea Arabidopsis thaliana Oenothera elata Lotus corniculatus Fig. 3. Dot blot hybridization, indicating that matK is likely present in all of the samples examined. 22 Zea mays Oryza sativa Triticum aestivum Calycanthus floridus Amborella trichopoda Kishino-Hasegawa test Pinus koraiensis Pinus thunbergii Adiatum capillus-veneris Parsimony criteria Tree TreeBayesian Length 5596 TreeParsimony 5554 Diff. 42 P* Likelihood criteria -ln L Diff. A B P* 0.0034* 23093.72952 (best) Psilotum nudum Physcomitrella patens Marchantia polymorpha Anthoceros formosae (best) 23137.92301 44.19349 0.000* Chaetosphaeridium globosum Chara vulgaris P<0.05 * Table 1. The results of Kishino-Hasegawa test show that the TreeParsimony is preferred in parsimony criteria, but the TreeBayesian is favored by likelihood criteria, and both the alternative tree topologies are rejected. (B) Bayesian inference tree Free-standing matK atpF clpP ndhA ndhB ndhH petB petD rpl2 rpl6 rpl12 rpl16 rpoC1 rps12 rps16 ycf2 ycf3 ycf10 ycf66 trnA trnH trnI trnG trnK trnL trnT trnV rrn23 Lycopodiella Adiantum Ophioglossum Selaginella 1 12.Ophioglossum petiolatum 13.Angiopteris palmiformis 14.Osmunda banksiifolia 15.Adiantum capillus-veneris 16.Dicranopteris linearis 17.Lygodium japonicum 18.Sphenomeris biflor 19.Nicotiana sylvestris 20.plasmid sd4 21.plasmid lyco8 22.plasmid ophio11 Bryophytes Fig. 6. Phylogenetic analyses of matK showed Gnetales is sister to other seed plants. Intron 1. Anthoceros formosae 2. Marchantia polymorpha 3. Equisetum ramosissimum 4. Isoetes taiwanensis 5. Selaginella doederleinii 6. Selaginella delicatula 7. Selaginella tamariscina 8. Selaginella involuens 9. Selaginella tamariscina 10. Lycopodiella cernua 11. Lycopodium pseudoclavatum 1.00 Fig. 7. Distribution of chloroplast introns. Arrow A indicates the presence of trnK/matK in Chaetosphaeridium + land plant chloroplasts. Arrow B indicates matK being a pseudogene in Anthoceros. Discussion The matK is present in the chloroplasts of lower land plants, but trnK5’-matK-trnK3’ structure may be lost in ferns due to chloroplast genome rearrangement. Chloroplast matKs are expressed in Ophioglossum and Lycopodiella, but not expressed in Selaginella. Chloroplast matK follows chloroplast average codon usage and the bias is influenced by GC content. Codon usage of matK does have evolutionary properties. Phylogenetic analysis of matK showed Gnetales is sister to other seed plants.
© Copyright 2026 Paperzz