An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary An energy-conserving quasi-hydrostatic deep-atmosphere dynamical core Marine Tort1 , Thomas Dubos1 and Thomas Melvin2 [email protected] www.lmd.jussieu.fr/∼mtlmd Monday, April 7 2014 PDEs on the Sphere, NCAR, Co 1 Laboratoire de Météorologie Dynamique, Ecole Polytechnique, France 2 Met Office, Exeter, UK 1 An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Motivations : LMD-Z and Planets Planetary atmosphere version e.g. Mars Atmospheric component of the IPSL model Common dynamical core on a longitude/latitude grid : shallow-atmosphere hydrostatic equations (HPE), enstrophy-conserving scheme (Sadourny, 1975a). 2 Summary An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Motivations : LMD-Z and Planets Planetary atmosphere version e.g. Giant gas planets, Titan → DEEP ATMOSPHERES Atmospheric component of the IPSL model The dynamical core requires a deep-atmosphere version. GOALS solve the deep-atmosphere quasi-hydrostatic equations (QHE) (White and Bromley, 1995 ) AND the recently derived non-traditional shallow-atmosphere equations (NTE) with complete Coriolis force (Tort and Dubos, 2014a), preserve some discrete conservation properties. 3 An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z An energy-conserving scheme (Lagrangian vertical coordinate case) Curl-form and Hamiltonian formulation How to conserve energy ? Iterative procedure to solve hydrostasy Application to LMD-Z Mass coordinate : how is that different from a Lagrangian vertical coordinate ? Idealized test cases Summary 4 Summary An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z An energy-conserving scheme (Lagrangian vertical coordinate case) Curl-form and Hamiltonian formulation How to conserve energy ? Iterative procedure to solve hydrostasy Application to LMD-Z Mass coordinate : how is that different from a Lagrangian vertical coordinate ? Idealized test cases Summary 5 Summary An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Curl-form and Hamiltonian formulation Derivation in curl-form using a time-dependent curvilinear coordinates system from White and Bromley (1995)’s equations (spherical coordinates and advective form), using a general vertical coordinate η : r (λ, φ, η; t). Momentum prognostic variables ũ = (ũ, ṽ ) (Dubos and Tort, 2014 ) shallow-atmosphere ũ = (r0 cos φ(u + Ωr0 cos φ), r0 v ), deep-atmosphere ũ = (r cos φ(u + Ωr cos φ), rv ), Momentum ∂t ũ + 1 (∇ × ũ) × U + ∇ (K + Φ) + θ∇π = 0 ρ̃ Mass ρ̃ = ρr 2 cos φ∂η r , ∂t ρ̃ + ∇ · U = 0 Entropy Θ = ρ̃θ, ∂t Θ + ∇ · (θU) = 0 6 An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Curl-form and Hamiltonian formulation Variational interpretation cos φ∂η r̃ 3 Θ dλdφdη ρ̃ K (ũ, r ) + Φ(r ) + e , 3ρ̃ ρ̃ V equations are written in term of functional derivatives of H Z Hamiltonian H(ρ̃, ũ, Θ, r ) = Functional derivatives δH δH δH =K +Φ B =U B =π δ ρ̃ δũ δΘ 2 2 u +v δH = −ρ̃ + 2Ω cos φu + r 2 cos φ∂η p + ρ̃g (r ) B δr r B HYDROSTATIC CONSTRAINT : δH =0 δr 7 Summary ṽ, V An energy-conserving scheme (Lagrangian vertical coordinate case) ũ, U Application to LMD-Z Summary q ṽ, V ˜ ⇡, p, ✓, K, ⇢, How to conserve energy ? q r, M, W, ↵, ˜ ⇡, p, ✓,ũ,K, ⇢, U i Imitate the exact Hamiltonian formulation at discrete level ũ, U ũ, U Salmon, 2004 ṽ, V r, M, W,ṽ,↵,V i + 1/2 ṽ, V 1. Choose the spatial gridj ũ, U q j + 1/2 ˜ ⇡, p, ✓, K, ⇢, ṽ, V k ũ, U q ṽ, V ˜ṽ,⇡, ⇢, V p, ✓, K, i, j, k k q r,qM, W, ↵, i + 1/2 j + 1/2 r, M, W, ↵,r, M, W,i + ↵,1/2 vertical :j +Lorenz grid. 1/2 j W, ↵, r, M, k ˜ ⇡, p, ✓, K, ⇢, ṽ, V r, M, W, ↵, q i ˜ ⇡, p, ✓, K, ⇢, ki + + 1/2 1/2 i + 1/2 r, M, W, ↵, 1 j j ˜ ⇡, p, ✓, K, ⇢, ˜ ⇡, p, ✓, K,i ⇢, i + 1/2 q ũ, U ˜i +⇡,1/2 ⇢, p, ✓, K, k + 1/2 r, M, W, ↵, j + 1/2 1 i ũ, U horizontal i i j: C-grid, i q j FIG 1. Grid straggering j + 1/2 k k + 1/2 k + 1/2 k 1 k + 1/2 j 1 1 j + 1/2 i + 1/2 k j i j + 1/2 i + 1/2 kj k + 1/2 k + 1/2 1 1 8 An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary How to conserve energy ? 2. Express the discrete energy budget, take care that the terms compensate. dH dt X δH δH δH δH δH ∂t ρ̃ + ∂t Θ + ∂t ũ + ∂t ṽ + ∂t r , δ ρ̃ δΘ δũ δṽ δr X δH δH δH δH i δH j δH δi + δj + δi θ + δj θ − δ ρ̃ δũ δṽ δΘ δũ δṽ = = δH δi ṽ − δi ũ δH + − ij δũ δṽ ρ̃ δH δi ṽ − δi ũ δH + ij δṽ δũ ρ̃ j i j + δi δH i δH + θ δi δ ρ̃ δΘ i δH δH j δH + θ δj ∂t r = 0 ! + δj − δ ρ̃ δΘ δr 3. Discretize the Hamiltonian and deduce the discrete derivatives H= X ρ̃ 1 ρ̃ 2 ũ r ik − Ωr ik cos φ 2 i 1 + 2 9 ṽ r jk 2 j +e cos φδk r 3 Θ , 3ρ̃ ρ̃ + Φ(r k ) An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Iterative procedure to solve hydrostasy HPE k δk p = −ρ̃ g QHE k δk p = −ρ̃g (r k ) ũ 2 i + ρ̃ a 2 δk r = ρ̃κθcp p κ−1 prκ cos φ δk r 3 = r ik 3 cos2 φ !ik 2 ik +Ω r cos φ + ρ̃ j ṽ 2 3 r jk 3ρ̃κθcp p κ−1 prκ cos φ r is the solution of a non-linear elliptic problem whose p is a byproduct. HPE : direct obvious solution, QHE : iterative solution (fix point or Newton’s method). 10 !jk An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z An energy-conserving scheme (Lagrangian vertical coordinate case) Curl-form and Hamiltonian formulation How to conserve energy ? Iterative procedure to solve hydrostasy Application to LMD-Z Mass coordinate : how is that different from a Lagrangian vertical coordinate ? Idealized test cases Summary 11 Summary An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Mass coordinate : how is that different from a Lagrangian vertical coordinate ? Mass budget : ∂t ρ̃ + ∂λ U + ∂φ V + ∂η (ρ̃η̇) ρ̃ is not a prognostic variable anymore and H is expressed with respect to integrated mass Ms instead of local mass ρ̃, η̇ 6= 0, there is additional non-zero vertical transport in the equations. Vertical relabeling symmetry (Dubos and Tort, 2014 ) compensation of vertical transports terms due to vertical relabeling symmetry, we may imitate to the discrete level this relabeling to cancel vertical transport in the discrete energy budget (Tort et al, in preparation). 12 An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Idealized test cases Like-Earth planet experiment Newtonian relaxation Held and Suarez, 1994 Baroclinic instability Ullrich et al, 2013 LMD−Z LMD−Z 20km 90N 60N 10km 30N 0 0 ENDGame ENDGame 20km 90N 60N 10km 30N 0 120W 920 930 940 60W 950 960 0 970 60E 980 990 0 120E 60S −30 1000 1010 1020 1030 −20 30S −10 0 0 30N 10 30N 20 30 FIG 5. Zonally averaged zonal velocity over 1000 planetary rotations FIG 4. Surface pressure ps at day 10 llll lmmmmmmmmmmmmmmmmmmm 13 An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Idealized test cases re Small like-Earth rplanet experiment 0= X ⌦ = X⌦e r e r0 = X H ⌦ = X⌦e Non-traditional regime X ∼ U/(Ωe H) ⇒ X = 15 non−traditional formulation r0 = 20km H re X non−traditional formulation 20km ⌦ = X⌦e 10km 10km H 0 Deep-atmosphere regime X U/(Ωe H) e.g X = 50 0 deep−atmosphere formulation deep−atmosphere formulation 20km 20km 10km 10km 0 60S −20 −15 30S −10 −5 0 0 5 30N 10 15 0 30N 20 25 30 1 FIG 6. Zonally averaged zonal velocity over 1000 planetary rotations X = 15 60S −20 1 30S −10 0 30N 30N 0 10 20 FIG 7. Zonally averaged zonal velocity over 1000 planetary rotations X = 50 development of a zonally averaged easterly flow in the tropics scaled by U = −2X Ω0 H cos φ (White and Bromley, 1995, Wedi and Smolarkiewicz, 2009 ) 1 14 30 An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Summary Implementation of the QHE into LMD-Z energy-conserving, systematic method to discretize hydrostatic systems, ongoing : newtonian relaxation on a Titan-like planet. Tort M. and Dubos T., 2014a Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Q. J. R. Meteor. Soc. (in press, early view) Tort M. and Dubos T., 2014b. Usual approximations to the equations of atmospheric motion : a variational perspective. J. Atmos. Sci. (accepted) Tort M. et al, 2014. Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography. J. Fluid Mech. (accepted) Dubos T. and Tort M., 2014. Equations of atmospheric motion in non-Eulerian vertical coordinates : vector-invariant form and Hamiltonian formulation. Mont. Weath. Rev. (submitted) 15 An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Consequence of vertical relabeling Energy budget induced by vertical flux (mass-based coordinate) W = ρ̃η̇ dH dt = = X δH δH δH δH δH ∂t ρ̃ + ∂t Θ + ∂t ũ + ∂t ṽ + ∂t r , δ ρ̃ δΘ δũ δṽ δr k X δH δH δH δH i δH j δH − δi + δj + δk W + δi θ + δj θ + δk θ W δ ρ̃ δũ δṽ δΘ δũ δṽ i + k δH W δk ũ δi ṽ − δi ũ δH − i ij δũ δṽ ρ̃ ρ̃ j δH W δk ṽ + j δṽ ρ̃ k δi ṽ − δi ũ δH + ij δũ ρ̃ i j + δi j δH i δH + θ δi δ ρ̃ δΘ i How to cancel the blue terms ? Bernoulli function B = k i k k δH is such as : δ ρ̃ j δH 1 δH 1 δH δk B + θ δ k − i δk ũ − j δk ṽ δΘ δũ ρ̃ ρ̃ δṽ X δk βB k 16 δH δH j δH + δj + θ δj ∂t r = 0 ? − δ ρ̃ δΘ δr = 0 = X k δk β(K + Φ) An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Consequence of vertical relabeling Tort and Dubos, 2014a Du − Dt 2z u 1 ∂p 2Ω 1 + + v sin φ + 2Ω cos φw + =0 r0 r0 cos φ ρr0 cos φ ∂λ Dv 2z u 1 ∂p + 2Ω 1 + + u sin φ + =0 Dt r0 r0 cos φ ρr0 ∂φ Dw 1 ∂p δNH + 2Ω cos φu + g + =0 Dt ρ ∂z Non-traditional shallow-atmosphere angular momentum is now conserved a cos φ (u + Ωr0 cos φ (r0 + 2z)) 17 Summary An energy-conserving scheme (Lagrangian vertical coordinate case) Application to LMD-Z Summary Stability analysis of the vertical discretization Isothermal atmosphere at rest on the f − F -plane - free pressure surface BC extension of Thuburn et al, 2002b’s work with a rigid lid BC. −10 20 x 10 Mass−based coordinate Lagrangian coordinate 15 −4 x 10 3 numerical analytical Re(σ)=f Im( ) 10 Re(σ) 5 0 2 −5 0 1 2 Re( ) FIG 3. Numerical eigenvalues with a Lagrangian vs mass-based coordinate 1 0 2 4 6 8 10 m 12 14 16 18 3 −4 x 10 20 Lagrangian coordinate 1/σ → ∞, FIG 2. Analytical vs numerical frequency spectrum Mass-based vertical coordinate 1/σ → 15 years. 18
© Copyright 2025 Paperzz