PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 Plan for Lecture 15: Finish reading Chapter 6 1. Some details of Liénard-Wiechert results 2. Energy density and flux associated with electromagnetic fields 3. Time harmonic fields 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 1 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 2 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 3 Solution of Maxwell’s equations in the Lorentz gauge -- continued Liénard-Wiechert potentials and fields -Determination of the scalar and vector potentials for a moving point particle (also see Landau and Lifshitz The Classical Theory of Fields, Chapter 8.) Consider the fields produced by the following source: a point charge q moving on a trajectory Rq(t). Charge density: (r, t ) q 3 (r R q (t )) Current density: J (r, t ) qR q (t ) (r R q (t )), where R q (t ) 3 dR q (t ) dt Rq(t) q 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 4 . Solution of Maxwell’s equations in the Lorentz gauge -- continued 1 (r, t ) 4 ò0 (r ', t ') d r 'dt ' | r r '] | t ' (t | r r ' | / c) 1 A(r, t ) 4 ò0 c 2 3 J (r ', t') d r 'dt ' | r r ' | t ' (t | r r ' | / c) . 3 We performing the integrations over first d3r’ and then dt’ making use of the fact that for any function of t’, f (tr ) dt ' f (t ') t ' (t | r R q (t ') | / c) R q (tr ) (r R q (tr )) , 1 c | r R q (tr ) | where the ``retarded time'' is defined to be tr t 02/15/2017 | r R q (tr ) | c . PHY 712 Spring 2017 -- Lecture 15 5 Solution of Maxwell’s equations in the Lorentz gauge -- continued Resulting scalar and vector potentials: q 1 (r, t ) , 4 ò0 R v R c q v A(r, t ) , 2 4 ò0 c R v R c Notation: R r R q (tr ) v R q (tr ), 02/15/2017 tr t PHY 712 Spring 2017 -- Lecture 15 | r R q (tr ) | c . 6 Solution of Maxwell’s equations in the Lorentz gauge -- continued In order to find the electric and magnetic fields, we need to evaluate A(r, t ) E(r, t ) (r, t ) t B(r, t ) A(r, t ) The trick of evaluating these derivatives is that the retarded time tr depends on position r and on itself. We can show the following results using the shorthand notation: R t r vR c R c 02/15/2017 and tr R . vR t R c PHY 712 Spring 2017 -- Lecture 15 7 Solution of Maxwell’s equations in the Lorentz gauge -- continued v2 v q 1 v R v R (r, t ) R 1 2 R R 2 , 3 4 ò0 c c vR c c R c vR v 2 v R v R vR A(r, t ) q 1 v R 2 2 R 2 . 3 t 4 ò0 Rc c c c v R c c R c q 1 E(r, t ) 3 4 ò0 v R R c vR v 2 vR v R 1 2 R R 2 . c c c c q R v v 2 v R R v / c R E(r, t ) B(r, t ) 1 2 2 3 2 2 4 ò0 c c cR v R c v R R R c c 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 8 Coulomb' s law : D free D J free t B Faraday's law : E 0 t No magnetic monopoles : B 0 Ampere - Maxwell' s law : H Energy analysis of electromagnetic fields and sources Rate of work done on source J(r, t) by electromagnetic field : dW dEmech d 3r E J dt dt Expressing source current in terms of fields it produces : dW D 3 d r E H dt t 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 9 Energy analysis of electromagnetic fields and sources - continued dW D 3 3 d r E J d r E H dt t D B 3 d r E H E H t t Let S E H " Poynting vector" 1 u E D H B energy density 2 u S E J t 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 10 Energy analysis of electromagnetic fields and sources - continued dEmech 3 d r EJ dt Electromagnetic energy density : E field d r u r, t 1 u E D H B 2 3 Poynting vector : S E H u From the previous energy analysis : S E J t dEmech dE field 3 2 d r Sr, t d r rˆ Sr, t dt dt 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 11 Momentum analysis of electromagnetic fields and sources dPmech d 3 r E J B dt Follows by analogy with Lorentz force : F qE v B P field 0 d 3 r E B Expression for vacuum fields : Tij dPmech dP field 3 d r dt i rj j dt Maxwell stress tensor : 1 2 2 Tij 0 Ei E j c Bi B j ij E E c B B 2 15 02/15/2017 PHY 712 Spring 2017 -- Lecture 12 Comment on treatment of time-harmonic fields Fourier transformation in time domain : 1 E(r,t) 2 ~ i t d E ( r , ) e ~ E(r,) dt E(r,t) e it ~ ~* Note that E(r,t) is real E(r,) E (r, ) These relations and the notion of the superposition principle, lead to the common treatment : 1 ~ ~ ~* i t i t i t E(r,t) E(r,)e E(r,)e E (r,)e 2 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 13 Comment on treatment of time-harmonic fields -- continued Equations for time harmonic fields : 1 ~ ~ ~* i t i t E(r,t) E(r,)e E(r,)e E (r,)eit 2 Equations Coulomb' s law : in time domain D free D Ampere - Maxwell' s law : H J free t B Faraday's law : E 0 t No magnetic monopoles : B 0 in frequency domain ~ D ~ free ~ ~ ~ H iD J free ~ ~ E i B 0 ~ B 0 Note -- in all of these, the real part is taken at the end of the calculation. 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 14 Comment on treatment of time-harmonic fields -- continued Equations for time harmonic fields : 1 ~ ~ ~* i t i t E(r,t) E(r,)e E(r,)e E (r,)eit 2 Poynting vector : Sr,t E(r,t) H(r,t) 1 Sr,t 4 1 4 ~ ~* ~ ~* i t i t i t E(r,)e E (r,)e H(r,)e H (r,)eit ~ ~* ~* ~ E(r,) H (r,) E (r,) H(r,) 1 ~ ~ ~* ~* 2 i t E(r,) H(r,)e E (r,) H (r,)e 2it 4 ~* 1 ~ Sr,t t avg E(r,) H (r,) 2 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 15 Summary and review Coulomb' s law : D free D Ampere - Maxwell' s law : H J free t B Faraday's law : E 0 t No magnetic monopoles : B 0 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 16 For linear isotropic media - - D E; B H and no sources : Coulomb' s law : E 0 E Ampere - Maxwell' s law : B 0 t B Faraday's law : E 0 t No magnetic monopoles : B 0 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 17 Analysis of Maxwell’s equations without sources -- continued: Coulomb' s law : E 0 Ampere - Maxwell' s law : B E 0 t B 0 t No magnetic monopoles : B 0 E E 2 B B t t Faraday's law : E 2B B 2 0 t 2 B B 2 E E t t 2 E 2 E 2 0 t 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 18 Analysis of Maxwell’s equations without sources -- continued: Both E and B fields are solutions to a wave equation: 1 B 2 v 1 2 E 2 v 2 B 0 2 t 2 E 0 2 t 2 0 0 c where v c 2 n 2 2 2 Plane wave solutions to wave equation : Br, t B 0 e 02/15/2017 ik r it Er, t E 0 e PHY 712 Spring 2017 -- Lecture 15 ik r it 19 Analysis of Maxwell’s equations without sources -- continued: Plane wave solutions to wave equation : Br, t B 0 e ik r it n k v c 2 2 2 Er, t E 0 e ik r it where n 0 0 Note: , , n, k can all be complex; for the moment we will assume that they are all real (no dissipation). Note that E 0 and B 0 are not independent; B from Faraday's law : E 0 t k E 0 nkˆ E 0 B0 c also note : kˆ E 0 0 and kˆ B 0 0 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 20 Analysis of Maxwell’s equations without sources -- continued: Summary of plane electromagnetic waves : nkˆ E 0 ik r it Br, t e c n k v c Er, t E 0 e ik r it where n and kˆ E 0 0 0 0 Poynting vector for plane electromagnetic waves : 2 2 2 S avg * ˆ n k E 1 1 ik r it 0 ik r it E0e e 2 c 2 1 2 ˆ k E 0 kˆ 2 c 2 n E0 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 21 Analysis of Maxwell’s equations without sources -- continued: Transverse Electric and Magnetic (TEM) waves Summary of plane electromag netic waves : nkˆ E0 ik r it Br, t e c 2 n k v c 2 2 where n Er, t E0 eik r it and kˆ E0 0 0 0 Energy density for plane electromagnetic waves : 1 ik r it ik r it * u avg E 0 e E0e 4 * ˆ ˆ 1 1 nk E 0 ik r it nk E 0 ik r it e e 4 c c 1 2 E0 2 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 22 More general result (for homework) 02/15/2017 PHY 712 Spring 2017 -- Lecture 15 23
© Copyright 2026 Paperzz