Photosynthesis- is the process that converts light energy into ___________________. This chemical energy is usually a carbohydrate. Only photoautotrophs can do photosynthesis. Heterotrophs must obtain their high organic nutrients from the environment. 6CO2 + 6H2O ___________> C6H12O6 + 6O2 Glucose has more energy than carbon dioxide and water. The reaction is ____________ and will require an energy input of ATP and NADPH2. The equation describes the___________cycle of photosynthesis and the chemical energy needed to make the sugar. In order to keep the reaction going, the cell must regenerate _______________. Regeneration of NADPH and ATP require light and intact chloroplasts with chlorophyll. This part of photosynthesis is known as the light reaction. The hydrogen needed to reduce NADP comes from the splitting of water. In the overall purpose and products of the light reaction is 1. ADP + P ____> ATP 2. NADP + H____> NADPHH____> 2H+ + 2e- + ½ O2 Chlorophyll is green and reflects green light and absorbs ______________. Chlorophyll is made from a tetrapyrole ring with Mg in the middle and a hydrocarbon tail. These pigments form photosystems found in the thylakoid membrane. There are some other pigments in photosystems which are yellow. These yellow pigments (carotenoids and xanthophylls) allow photosynthesis to occur in green light. White light is mixture of different colors of light with different wave lengths and frequencies. When white light lands on a blue object, red and green light is absorbed and blue is reflected. The absorption graph shows that the pigments absorb red and blue/violet light best. This is due to the accessory pigments. Chloroplasts have 3 membranes. The outer 2 are smooth and the inner one makes stacks of _________ which is a granum. The chlorophyll and other pigments are found inside the thylakoid membrane. They have the ability to convert light energy into _____________ A stack of thylakoids is called a granum. The matrix that the grana are embedded in is the stroma. It contains enzymes for _______________ synthesis. Below is a diagram of the thylakoid and the location of chlorophyll. The chlorophyll molecules and accessory pigments form photosystems (I & II). Each photosystem has a reaction center (p700& p680 respectively) Once photons are absorbed by the pigments of the photosystem, the electron becomes excited and the energy is passed on from molecule to molecule until it reaches the _____________. The p680 and p700 has the ability to pass the energized electron on to the ________________________. Also embedded in the thylakoid membrane is a series of proteins that have the ability to be reduced an oxidized. Each one has less reducing power than the preceding one. Protein Q has the ability to receive an _________ electron from the p680 reaction center. It then moves to PQ or plastoquinone. From there it move to a cryptochrome complex which is a proton pump that when reduced has the ability to pump ___________ from the outside of the stroma to the inside of the thylakoid. From there it goes plastocyanin. By this time the e- has lost much of its free energy and must be energized by ______________. The electron has now left the electron transport chain. Replacement electrons for PS II come from the splitting of ________. A manganese complex associated with PS II has the ability to split water to produce, H+, e-, and oxygen gas. The e- are shuttled to the photosystem, H+ are used to lower the pH of the thylakoid, and the oxygen gas is released to the atmosphere. As the electron transport chain runs, there is an accumulation of _____ on the inside of the thylakoid. This is due to the splitting of water and the proton pump, PQ. As the H+ collect, the pH of the interior is _________ and there is a separation of charge across a membrane. This can now do work. On the thylakoid membrane, there are CF complexes which contain a channel (CF0) and a large protein head (CF1). On the CF1 head, there is an enzyme ATP synthetase. This enzyme has the ability to _______________ ADP--->ATP as 3 H+ pass through. This is noncyclic photophosphorylation. 1. Water is split to make replacement e-, H+ and O2. 2. There are two photosystems involved. 3. NADP is reduced to NADPH. Cyclic photophosphorylation is considered to be a more ancient biochemical pathway. It is found in most photosynthetic bacteria and all photosynthetic eukaryotes. It consists of one photosystem (PSI) and a simple _______________. At the end of the electron transport chain, the electron is returned to PS I. That being the case, water is not split, nor is NADP reduced. One part of the electron carrier does pump H+ across the thylakoid membrane to make ___. Cyclic photophosphorylation does not provide hydrogens for the reduction of carbon dioxide to make a carbohydrate. So therefore quite often the hydrogens come from H2S. In photosynthetic, eukaryotic cells, two photosystems (II & I) work together to form noncyclic photophosphorylation. Overview light reaction 1. 18 ATP are made from 18ADP + 18P 2. Water is split. e- + H are used for _______ , 6 O2 are released. 3. 12 NADPH are made. Overview dark reaction The carbohydrate is made in the _________. It requires enzymes every step. 1. 18ADP + 18P are made from ____ATP. Energy is _____________ 2. NADPH is oxidized to make _____. The hydrogens are transferred making a carbohydrate. 3. 3 CO2 are used to make a triose G3P (glyceraldehyde 3-phosphate) or __________ phosphoglyceraldehyde. 2 of these are used to make glucose. The Calvin cycle will make one extra PGAL. PGAL is a triose. It takes 2 PGALs to make glucose, the hexose. So therefore the Calvin cycle needs to be "turned" _________ in order to make a molecule of glucose. (Actually 6 times). Steps of the Calvin Cycle 1. Carbon dioxide combines with ribulose biphosphate. Ru-Bp is a pentose monosaccharide with 2 phosphate groups 2. It will form an unstable _____________. 3. The intermediate will form 2 molecules of phosphoglyceric acid. 4. PGA will be phosphorylated by ATP to form ____________. 5. DPGA is reduced by NADPH to form the triose, PGAL. A phosphate group is removed in this reaction. 6. In the last step, 5 molecules of glyceral aldehyde phosphate (G3P) or PGAL are needed to remake 3 molecules of _______. 3 ATP are needed to make this happen. 1 G3P is left over. PGAL is a triose. In order to make glucose, the Calvin cycle must be turned __________. This shows how 2 molecules of G3P or PGAL are turned into a molecule of glucose and how it can be turned into ___________________. While the glucose is needed for _____________, there is a second reason why the Calvin cycle evolved; to provide a carbon skeleton so that other organic molecules or structures can be made. Environmental factors affect the rate of photosynthesis. 1. Light intensityAt first an increase in the light intensity results in a corresponding increase in the rate of photosynthesis as the photo-systems are activated. As the photosystems become ___________, an increase in light intensity will not increase the _____of photosynthesis. 2. Temperature- At first an increase in temperature results in an ___________ in the rate of photosynthesis because the molecules are moving faster, but at a higher temperature the reaction rate _____________________ because enzymes denature. 3. If a plant is given an increase in ___________, the rate of photosynthesis decreases because of phenomenon of photorespiration. The enzyme that puts the CO2 onto ribulose biphosphate is ____________. Sometimes rubisco can make a mistake and put oxygen on to ribulose biphosphate. This happens when the concentration of oxygen gas is ________than carbon dioxide. This happens when the plant is water stressed and the stomates are _______. Gas exchange takes through pores on the bottom of the leaf called stomates. Guard cells regulate stomates but as gas exchange occurs water leaves the stomates via ____________. When a plant becomes water stressed, stomates close to conserve water, but this will stop ________________. This will increase the O2 and decrease CO2. Photorespiration begins. C3 photosynthesis is a plant that does the Calvin cycle and the light reaction. There are plants that modify C3 photosynthesis by adding an additional pathway- The leaf of a C3 plant (normal leaf). Chloroplasts are located in the palisade and spongy ____________. There are no chloroplasts in the bundle sheath cells. C4 photosynthesis includes the light reaction, the Calvin cycle and the Hatch-Slack pathway. These C4 plants also have a different ______________. This Hatch-Slack pathway is able to deliver dwindling supplies of CO2 when the stomates are closed. The enzyme (__________________) that fixes the CO2, combines it with a three carbon compound, phosphoenol pyruvate (PEP) to form a four carbon compound. This enzyme does not make a mistake like rubisco. The name of this enzyme is PEP carboxylase. The leaf of a C4 plant. There are no palisade mesophyll cells. Instead there is a layer of mesophyll around the bundle sheath cells. Chloroplasts are located in the mesophyll and spongy mesophyll. The chloroplasts are different. The chloroplasts found in the mesophyll have well defined ________________ and specialize in the light reaction and the Hatch-Slack pathway. The thylakoids in the bundle-sheath chloroplast do not have defined thylakoids, are larger and store starch. This indicates the light reaction is not prevalent, and they do specialize in the Calvin cycle after the Hatch-Slack pathway delivers the CO2. Plants that use C4 photosynthesis include __________________________________. Another variation of photosynthesis is ___________(crassulacean acid metabolism). These CAM plants include succulent plants and pineapples. Because of the intense heat and arid conditions, these plants only open up the stomates ____________ for gas exchange. The CO2 (like C4 photosynthesis) is fixed to PEP by PEP _______________. It is then converted to an organic acid and stored until the day. During day stomates are closed and the cell releases the CO2 from the organic acid and the Calvin cycle occurs. C3 photosynthesis (light reaction and Calvin cycle) is called this because the first stable product has 3 carbons. C4 photosynthesis (light reaction, Hatch-Slack, Calvin cycle) is called this because the first product made has _______________________.
© Copyright 2026 Paperzz