Econ 0702 Mathematical Methods in Economics Answer Keys for Problem Set 2 1.1 FOC: dy 10 x 1 dx 10 x 1 0 x* SOC: 1 1 , y* 10 20 d2y 10 0 dx 2 ( x* 1 1 , y* ) is a relative minimum. 10 20 1.2 FOC: dy 3x 2 3 dx 3x 2 3 0 x* 1or 1(rejected ) y* 3 SOC: d2y 6x dx 2 If x 1, d2y 60 dx 2 ( x* 1, y* 3) is a relative minimum. 1.3 FOC: dy 2x 0 for any values of x ; there exists no relative extremum. dx (1 2 x) 2 1 2a) ( x) 63 98x 62 x 2 18x 3 2 x 4 R4 2b.1) FOC: dy 4x 3 dx 4x3 0 x* 0, y* 0 SOC: f ' ' ( x ) 12 x 2 f ' ' ( 0) 0 f ' ' ' ( x ) 24 x f ' ' ' ( 0) 0 f 4 ( x ) 24 0 The first non-zero derivative value is f 4 24 . ( x* 0, y* 0) is a relative maximum. 2b.2) FOC: dy 3( x 1) 2 dx 3( x 1) 2 0 x* 1 2 SOC: f ' ' ( x) 6( x 1) f ' ' (1) 0 f ' ' ' ( x) 6 0 The first non-zero derivative is f ' ' '. ( x* 1, y* 16) is an inflection point. 3ai) 3 2 u q u v 2 7 v 3aii) 1 2 3 u q u v w 2 4 0 v 3 0 7 w 3bi) D1 3 0 D2 17 0 q is positive definite. 3bii) D1 1 0 D2 0 q is neither positive definite nor negative definite. 3 4a) The first-order condition: the only solution is: 2 3 0 6 4 4 12 H 3 0 H1 2 0 H2 3 0 H3 4 0 d 2 z is positive definite. z* 0 is a minimum. 4b) The first-order condition: 4 4 0 0 H 0 1 0 0 0 4e H1 4 0 H2 4 0 H 3 16e 0 d 2 z is positive definite. z* 2 e is a minimum. 5. (a) 5 6 5 (b) (i) The set of points lying on or above an exponential curve; a convex set. 160 140 120 100 80 60 40 20 0 1 2 3 4 5 6 7 8 9 10 (ii) The set of points lying on or above a rectangular hyperbola in the positive quadrant; a convex set. 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 7
© Copyright 2026 Paperzz