SUPPORTING INFORMATION QM/MM calculations In this section we provide a detailed description of the methods used and justify our confidence in the best results, reported in the main text. Table S1 displays the results. All calculation codes m1–10 in this section refer to this table. Choice of functional: The mPWPW functional underestimates the energy barrier, as can be seen in m1. Optimisation with its hybrid version, mPW1PW, gives geometries that are very close (see table S2) and an energy difference that is very similar to the one obtained using the mPWPW geometry (cf. m2 with m3). Choice of basis set: Expansion of the basis set from b1 to b2 with DFT methods does not change considerably the energy barrier (Compare m2 with m4). It is also well known that geometries are less sensitive to basis sets than energies. Ab initio correlated methods, such as MP2, do need larger basis sets, and the b1 result shows a significant discrepancy with the b2 result, justifying the use of the larger basis set for these calculations. m6 therefore is much more reliable than m5, the latter being displayed for the sake of coherence. Comparison of m2 and m4 shows that a larger basis set does not render the pentacoordinated structure stable enough to become an intermediate, and thus, that the inability to locate a phosphorane is not a limitation of the basis set. In our previous work, we showed that a split-valence basis set with polarisation functions on oxygens and phosphorus gave correct geometries for stable phosphoranes and transition states1. Choice of QM region: Expanding the QM region to include further residues will improve the result, but the numbers do not change significantly. Compare m4 with m7, and m6 with m8. Overall: Our best methods are m7 and m8. We have shown that the error for each method arising from the basis set and the QM region is around 1-2 kJ/mol. The barriers for m7 and m8 also differ by a similar amount (1.4 kJ/mol difference). The exothermicity is slightly larger for SCS-MP2 (-29.7 vs -35.0 kJ/mol). SCS-MP2 is considered a more reliable method but we have no benchmarks to compare with. A difference of 5.3 kJ/mol, however, should be considered small when all the approximations of the computational setup are taken into account. Table S1. Relative energies of reactants, TS and products in kJ mol-1. Method[a] Reactants TS[b] Products m1 mPWPW/b1/q1 0.0 7.2 –31.1 m2 mPW1PW/b1/q1 0.0 24.2 –31.2 m3 mPW1PW/b1/q1[c] 0.0 - –32.4 m4 mPW1PW/b2/q1 0.0 25.0 –30.6 m5[d] SCS-MP2/b1/q1 0.0 17.3 –36.4 m6 SCS-MP2/b2/q1 0.0 26.0 –36.6 m7[e] mPW1PW/b2/q2 0.0 25.5 –29.7 m8[e] SCS-MP2/b2/q2 0.0 24.9 –35.0 [d] [a] The QM method, the basis set and the QM region used for single-point calculations at the geometries optimized with the mPWPW/b1/q1 scheme are indicated. [b] The energy of structure 10 of the reaction path. [c] Geometry of the reactants and products optimized with the mPW1PW/b1/q1 scheme. [d] These are results of limited value. See text. [e] These are the most reliable results. See main text. Table S2. Relevant distances in the optimized reactant and product structures in Angstroms. Method [a] d (glucose-P) R[b] P[c] mPWPW/b1/q1 2.73 1.76 1.86 mPW1PW/b1/q1 2.79 1.73 1.81 d (Asp10-H [d]) R P d (H[d]-glucose) R P 2.90 1.64 1.05 1.02 1.52 2.89 1.67 1.02 1.00 1.54 d (P-Asp8) R P [a] The QM method, the basis set and the QM region used is shown. [b] Reactants. [c] Products. [d] The hydrogen atom that is transferred from Glucose to Asp10 along the reaction path. NMR chemical Shifts We have calculated the NMR chemical shifts with the IGLO method2,3. We used the B3LYP functional, and the IGLOIII basis set for all atoms except for Mg, for which it is not defined. Instead we substituted the TVZP basis set. The calculation was done with the q2 definition of the QM/MM region. The reference was CFCl3, which was optimized with the SVP basis set and a COSMO solvation model4,5 and the fluorine chemical displacement was calculated with B3LYP/IGLOIII. Figure S1. Representation of the first 14 molecules surrounding a given -PGM molecule (in green) in the crystal under study. This first shell of proteins was generated with Pymol. For these molecules the OPLS-AA MM charges of all atoms were included. A homogeneous background charge was added to make the system neutral. For additional images, 6 cells in each of the (i,j,k) directions were considered. To reduce the computational cost, the dipole moment of each chain was calculated and represented by two equivalent point charges. The unit cell contains 4 molecules and so the total number of dipoles added was (6x2)3x4-15=6897. Because the energy changes introduced by this shell were negligible, we did not consider any more distant crystallographic images. Figure S2. Representation of the the calculated structures for the transition state of the phosphoryl transfer and the MgF3- complex. Striking similarities are observed in the position of active site residues, thus supporting the efficiency of the MgF3- ion as a transition state analogue. Figure S3. 2Fo-Fc electron density map fitting of the MgF3- region. Structural data Atomic coordinates of the reactant, transition state, product and the MgF3- complex are provided below. The Löwdin atomic charges6 for each structure are also given. Both the geometries and the atomic charges have been calculated with m1 method. H C C O O H H H C C O O H H H H C N H H H H H H C C O O H H H C C O O H H C C H H O O O P O O O H H H Mg O H H O H H x 10.848064 9.866140 9.764049 10.726871 8.840747 9.717426 9.086160 10.492049 10.827878 12.327041 12.800192 13.003004 10.601553 10.228668 12.858448 11.542916 12.153531 11.684507 12.121975 13.200960 10.670316 12.248498 11.804684 6.328456 7.314038 7.868321 7.068171 9.074442 8.036620 7.256767 3.952904 4.277055 5.357475 6.351133 5.202396 3.385154 4.673759 12.563520 11.401199 11.306923 13.767728 12.811862 10.161702 13.777629 11.449871 12.362217 10.189870 11.986154 12.250642 11.600692 10.302741 8.209541 7.280337 6.475391 7.652685 8.282670 9.183232 7.842017 REACTANT y 29.000991 28.612320 27.099864 26.528822 26.505299 28.969629 29.057516 23.714909 22.813793 22.483707 22.494368 22.146045 22.956584 21.955731 22.287667 25.929503 26.646774 26.818883 27.629470 26.285381 27.112956 27.577056 25.919248 29.519881 29.337937 27.933247 27.025640 27.732882 30.085343 29.493555 26.539704 26.019925 24.950435 25.276251 23.806111 25.584419 26.809042 21.327745 20.498300 19.557680 19.764850 22.478444 21.227804 20.584139 24.837308 25.221838 23.971749 24.716334 21.679551 20.282271 22.190279 24.502429 22.707283 22.936538 21.809513 24.866341 24.810183 25.743498 z 11.222942 11.530228 11.532749 12.207901 10.958264 12.571340 10.889801 7.779268 8.314644 8.102439 6.930668 9.128071 9.388464 7.940933 10.757927 16.882075 16.329972 14.934380 16.838569 16.311352 14.877154 14.479066 14.310515 14.347607 14.783002 14.544503 14.106180 14.854779 14.398710 15.879718 11.019565 10.102732 10.322377 11.050440 9.788747 9.619865 9.432351 12.510593 11.939896 12.486485 13.077592 11.760160 12.105265 12.567320 11.918047 10.749641 11.596519 13.365149 13.521261 10.872171 11.864620 11.457959 11.046652 10.464859 10.774883 13.443018 13.817194 13.769977 Atomic Charge 0.107438 -0.266176 0.292574 -0.544302 -0.452730 0.181957 0.155644 0.084123 -0.292038 0.253395 -0.623735 -0.610790 0.182169 0.133864 0.401736 0.160692 -0.256373 -0.201844 0.124689 0.139229 0.310981 0.307146 0.336699 0.140195 -0.301775 0.261183 -0.631744 -0.618957 0.147818 0.154264 0.096185 -0.270201 0.276353 -0.599463 -0.589436 0.140837 0.164884 0.195715 0.006355 0.183212 0.374694 -0.616744 -0.740036 -0.573461 1.083111 -0.768628 -0.823199 -0.787504 0.150746 0.167763 0.391087 1.447406 -0.815164 0.399365 0.435937 -0.790245 0.386185 0.398913 H C C O O H H H C C O O H H H H C N H H H H H H C C O O H H H C C O O H H C C H H O O O P O O O H H H Mg O H H O H H TRANSITION STATE x y z 10.876635 28.960715 11.228342 9.902948 28.549047 11.530244 9.843821 27.022762 11.557157 10.755944 26.453680 12.250013 8.921429 26.436383 10.933379 9.734066 28.918702 12.563515 9.120675 28.968551 10.873592 10.489080 23.670441 7.792317 10.823918 22.769778 8.329088 12.324265 22.457267 8.140527 12.811444 22.437311 6.978307 13.006705 22.156560 9.181478 10.570990 22.905457 9.397427 10.238672 21.909258 7.940329 12.739824 22.339502 10.619668 11.522918 25.892923 16.851706 12.133467 26.594931 16.280007 11.662581 26.728590 14.878818 12.099439 27.592402 16.758609 13.182002 26.236550 16.271742 10.645946 27.024479 14.816842 12.214677 27.481290 14.405361 11.786461 25.829174 14.280686 6.347707 29.515288 14.352399 7.334904 29.332321 14.784222 7.885285 27.924134 14.549961 7.087580 27.022218 14.097123 9.085266 27.718834 14.882891 8.056978 30.076183 14.391608 7.284159 29.493708 15.880545 3.967561 26.543768 11.023078 4.296426 26.023672 10.108280 5.374397 24.952762 10.337924 6.372585 25.281595 11.055467 5.207655 23.800977 9.821117 3.406509 25.589084 9.620530 4.698796 26.812734 9.440999 12.425265 21.387069 12.466388 11.306522 20.492518 11.905753 11.260391 19.555305 12.462196 13.709473 19.891146 13.039371 12.621736 22.543760 11.661993 10.031242 21.144229 12.066529 13.677661 20.717616 12.534212 11.593218 24.453222 11.895985 12.395710 25.040096 10.731209 10.202479 23.797579 11.605120 12.042831 24.520403 13.373678 12.099251 21.773746 13.458909 11.523323 20.269161 10.841414 10.118768 22.120616 11.832269 8.255154 24.521687 11.458970 7.279480 22.713950 11.104200 6.475238 22.959478 10.526473 7.624419 21.818629 10.798398 8.368657 24.876913 13.453820 9.311655 24.965229 13.700583 7.890550 25.738012 13.760248 Atomic Charge 0.095341 -0.273815 0.272907 -0.596517 -0.521700 0.172557 0.148236 0.090191 -0.287814 0.261112 -0.606690 -0.591054 0.184991 0.138128 0.421261 0.160420 -0.255616 -0.188146 0.126934 0.137822 0.314320 0.307214 0.333400 0.138801 -0.302193 0.262393 -0.633729 -0.620359 0.148223 0.152518 0.096203 -0.270717 0.273569 -0.595212 -0.593953 0.139055 0.163926 0.213273 0.011119 0.186900 0.382296 -0.622243 -0.736828 -0.559039 1.124428 -0.764027 -0.829271 -0.793612 0.168359 0.168290 0.389952 1.446640 -0.813710 0.398322 0.431200 -0.786915 0.386417 0.396444 H C C O O H H H C C O O H H H H C N H H H H H H C C O O H H H C C O O H H C C H H O O O P O O O H H H Mg O H H O H H x 10.834326 9.833022 9.758588 10.478993 8.964600 9.585259 9.122278 10.507949 10.864279 12.340446 12.810971 13.144118 10.641598 10.281568 12.797945 11.499318 12.113969 11.617059 12.098096 13.158025 10.599848 12.143658 11.727720 6.349769 7.334598 7.872650 7.074716 9.053359 8.064769 7.284320 3.998976 4.335333 5.408715 6.416542 5.221160 3.447392 4.744077 12.347677 11.241430 11.230795 13.675628 12.522028 9.952275 13.616734 11.729112 12.362578 10.223865 12.074063 12.035642 11.463339 10.012605 8.334501 7.288284 6.485998 7.625016 8.524113 9.429277 7.931609 PRODUCT y 28.976883 28.596374 27.075434 26.583432 26.420348 29.040409 28.980508 23.621167 22.732358 22.452443 22.391607 22.199128 22.890406 21.854950 22.308661 25.835725 26.513807 26.620341 27.523448 26.142405 26.921377 27.368838 25.723313 29.528604 29.343340 27.923184 27.031897 27.709323 30.074325 29.520636 26.542651 26.019918 24.944456 25.274701 23.783102 25.587096 26.808082 21.368241 20.446883 19.508428 19.920277 22.497596 21.057042 20.737394 24.047712 24.889045 23.638473 24.382746 21.766248 20.220797 22.050347 24.518089 22.704414 22.965931 21.826613 24.943648 25.360070 25.706287 z 11.177716 11.420973 11.577309 12.489439 10.829896 12.407649 10.668899 7.823761 8.367577 8.099634 6.955934 9.114550 9.441629 8.015290 10.096624 16.826065 16.231224 14.838516 16.685074 16.217611 14.790822 14.338612 14.242973 14.363296 14.799358 14.593147 14.116447 14.981470 14.396549 15.893224 11.030261 10.119777 10.360780 11.058841 9.867060 9.625966 9.455303 12.448363 11.904423 12.459941 13.009860 11.577688 12.069425 12.491086 11.840630 10.708661 11.567956 13.312545 13.441953 10.838729 11.845077 11.466696 11.180179 10.606707 10.828553 13.446903 13.388882 13.769603 Atomic Charge 0.088332 -0.282525 0.254716 -0.621125 -0.564373 0.166265 0.139394 0.109566 -0.278662 0.290530 -0.508034 -0.475620 0.205041 0.154108 0.416837 0.159273 -0.255380 -0.175716 0.126662 0.133953 0.320275 0.303582 0.335124 0.134582 -0.304676 0.260488 -0.649747 -0.607752 0.145551 0.149966 0.096536 -0.271583 0.269419 -0.587943 -0.603910 0.136270 0.161613 0.220580 0.016364 0.188237 0.385095 -0.625104 -0.741346 -0.550165 1.053271 -0.819432 -0.852103 -0.811267 0.178584 0.158091 0.392494 1.445957 -0.811335 0.396905 0.424113 -0.800731 0.390609 0.390145 H C C O O H H H C C O O H H H H C N H H H H H H C C O O H H H C C O O H H C C H H O O O H H H Mg O H H O H H Mg F F F x 10.943436 9.996216 9.894598 10.757631 8.940918 9.888769 9.175414 10.452264 10.785735 12.288806 12.752743 12.980289 10.534071 10.188790 12.682652 11.499180 12.078055 11.627338 11.985581 13.142608 10.609490 12.196877 11.765980 6.325185 7.314231 7.881759 7.077958 9.099617 8.027122 7.262820 3.914109 4.242035 5.330970 6.319264 5.157807 3.358769 4.635282 12.367388 11.251737 11.225171 13.671505 12.511618 9.965276 13.627296 12.047739 11.493533 10.014267 8.113615 7.085217 6.333491 7.482411 8.460623 9.387571 7.908707 11.636674 12.685701 9.878609 12.056414 MgF3- complex y 28.887840 28.444260 26.912732 26.280805 26.384707 28.770582 28.888674 23.662439 22.779165 22.448801 22.400939 22.170447 22.944744 21.909593 22.293471 25.960585 26.702316 26.786025 27.696744 26.394766 27.075129 27.500328 25.828122 29.520591 29.337926 27.935633 27.029724 27.774510 30.096198 29.479745 26.592410 26.093858 25.026032 25.370152 23.883934 25.652551 26.899479 21.323545 20.423555 19.482108 19.859813 22.494854 21.041798 20.674877 21.671814 20.206153 21.986891 24.518424 22.758700 23.028339 21.901050 24.964579 25.307538 25.769791 24.363190 25.187301 23.608364 24.542148 z 11.208894 11.551753 11.545305 12.244828 10.915574 12.608388 10.961009 7.830561 8.398637 8.200744 7.038706 9.245060 9.463117 8.045276 10.619488 16.910450 16.357044 14.950016 16.833800 16.367896 14.856752 14.441338 14.436711 14.342388 14.769265 14.499874 14.082651 14.776923 14.388174 15.868648 11.019425 10.092123 10.312007 11.035619 9.790917 9.598761 9.438902 12.459904 11.892661 12.444386 13.003561 11.681115 12.052162 12.481952 13.474812 10.830330 11.737533 11.469529 11.163738 10.518616 10.825896 13.424136 13.395525 13.764670 11.910163 10.545379 11.475450 13.790724 Atomic Charge 0.077562 -0.364443 0.021783 -0.283214 -0.262573 0.145478 0.129697 0.071860 -0.375783 -0.016132 -0.374347 -0.329181 0.157759 0.122935 0.311272 0.158451 -0.260068 -0.227111 0.119855 0.133708 0.245789 0.288255 0.328405 0.117897 -0.381241 0.000898 -0.372815 -0.312174 0.132831 0.135722 0.079885 -0.343830 0.017822 -0.331050 -0.341413 0.118206 0.150943 0.004916 -0.143316 0.142082 0.308930 -0.354652 -0.438047 -0.336012 0.087460 0.113137 0.324519 1.154920 -0.575669 0.283967 0.347095 -0.556585 0.289512 0.272524 1.316527 -0.923473 -0.943766 -0.865707 1. 2. 3. 4. 5. 6. Marcos E, Crehuet R, Anglada JM. Inductive and external electric field effects in pentacoordinated phosphorus compounds. J Chem Theory Comput 2008;4:4963. Kutzelnigg W. Theory of magnetic-susceptibilities and NMR chemical-shifts in terms of localized quantities. Isr J Chem 1980;19:193-200. Schindler M, Kutzelnigg W. Theory of magnetic-susceptibilities and NMR chemical-shifts in terms of localized quantities.2. Application to some simple molecules. J Chem Phys 1982;76:1919-1933. Klamt A, Schüürmann G. COSMO - A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc-Perkin Trans 2 1993:799-805. Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 1998;102:1995-2001. Lowdin PO. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J Chem Phys 1950;18:365-375.
© Copyright 2026 Paperzz