Particle in a Box H n ( x) En n ( x) 2 Hˆ K Vˆ ( x) 2m d2 ˆ dx 2 V ( x) 0 xa 0 ˆ V ( x) x a & x 0 2 For x 0 or x a Hˆ 2m d2 dx 2 Hˆ ( x) ( x) E ( x) Has to be finite ( x) 0 15_01fig_PChem.jpg Particle in a Box 2 For 0 x a Hˆ n ( x) 2m d2 dx 2 n ( x) En n ( x) d 2 2mEn d2 2 dx 2 2 n ( x) 0 dx 2 k n ( x) 0 k 2 2 2 k En 2m 2mEn 2 n ( x) Ae ikx Be 15_01fig_PChem.jpg ikx Particle in a Box x 0 or x a ( x) 0 n (0) Aeik 0 Beik 0 0 A B n ( x) 2iB sin(kx) n n (a) 2iB sin(ka) 0 ka n k a n 2 2 2 n 2 h 2 En 2 2ma 8ma 2 n x n ( x) C sin( ) a 15_01fig_PChem.jpg Wavefunctions for the Particle in a Box a 2 2 n x ( x ) ( x ) dx 1 C sin n ( ) dx n x n ( x) C sin( ) a a * n 0 a 0 sin 2 ( sx) dx 1 cos 2sx 2 dx x 1 sin(2sx) C 2 4s a n x a 1 n x 1 n x 0 sin ( a ) dx n 2 a 4 sin 2 a 0 a 2 a 2 C 2 a 2 n x n ( x) sin( ) a a 15_02fig_PChem.jpg Wavefunctions are Orthonormal a * n ( x) m ( x) nm 0 2 n x 0 a sin( a ) a * 2 m x sin( ) dx a a 2 n x m x sin( ) sin( ) dx a0 a a a a n m x n m x 1 sin sin dx a0 a a 15_02fig_PChem.jpg Wavefunctions are Orthonormal n m x 1 a cos a n m a 0 a n m x 1 a cos a n m a 0 a for m n 1 1 a a [0 0] 0 0 0 a n m a n m for m n 1 a a 1 cos[n m] 0 1 1 0 0 limmn a 2n a n m 15_02fig_PChem.jpg Particle in a Box Wavefunctions 2 n x n ( x) sin( ) a a n2 h2 En 8ma 2 16h 2 E4 8ma 2 Pn ( x) Normalized n=4 + - 2 2 n x sin ( ) a a + Orthogonal Node 9h 2 E3 8ma 2 4h 2 E2 8ma 2 2 # nodes= n-1 + n=3 n>0 n=2 h E1 0 n=1 8ma 2 Ground state Wavelength 2a n 15_03fig_PChem.jpg + + Probabilities xf P ( xi , x f ) n* ( x) n ( x) dx xi For 0 <x < a/2 2 P(0, a / 2) a a /2 0 xf 2 2 n x sin ( ) dx a xi a a /2 sin 2 ( 0 n x ) dx a a /2 n x 2 a 1 n x 1 n x sin 2 ( ) sin 2 a a n 2 a 4 a 0 1 n (a / 2 0) a 2 2 1 n n a / 2 n 0 sin 2 sin 2 4 a a 2 n 1 1 0 0 n 4 4 2 15_02fig_PChem.jpg Independent of n Expectation Values xf xf 2 n x ˆ n x ˆ O( xi , x f ) ( x)O m ( x) dx sin( )O sin( ) dx a xi a a xi * n Average position 2 n x n x ˆ x sin( ) x sin( ) dx a0 a a a 2 n x n x sin( ) x sin( ) dx a0 a a a 2 2 n x 2 a a x sin 2 ( ) dx a0 a a 4 2 a Independent of n 15_02fig_PChem.jpg Expectation Values 2 n x n x 2 n x 2 n x ˆ ˆ sin( ) xx sin( ) dx sin( ) x sin( ) dx a0 a a a0 a a a x2 a 2 n x x 2 sin 2 ( ) dx a0 a a 2 2 2 3 a x a 6 2 x x 2 2 2 2 3 a 2 6 2 2 2 3 15_02fig_PChem.jpg 6 2 a2 4 1 0.18a 4 Expectation Values px px 2 px a px 0 a 0 2i a 2 2 n x 2 n x sin( ) pˆ x sin( ) dx a a a a 2 n x d 2 n x sin( ) i sin( )dx a a dx a a n x d n x 2i sin( ) sin( ) dx 0 a dx a a a a sin( 0 n x n ) a a n x cos( ) dx a 2i n n x n x sin( ) cos( ) dx 0 2 a a a 0 a odd even px 15_02fig_PChem.jpg p x 2 02 px 2 Expectation Values a px 2 0 2 n x 2 2 n x ˆ sin( ) px sin( ) dx a a a a d d 2 pˆ x i i dx dx 2 a 2 a n x d 2 n x sin( ) sin( ) dx 2 0 a dx a 2 a n x n2 2 n x 0 sin( a ) a2 sin( a ) dx 2 a 2 2 n 2 2 2 2 n2 2 a 2 n x sin ( ) dx 3 3 a a a 2 0 a 15_02fig_PChem.jpg 2 n2 2 a2 2 d 2 dx 2 Uncertainty Principle px n n 2 a a 2 2 2 n xpx a a x a 2 2 3 6 2 2 2 3 6 2 1 n 4 0.18 n 0.57n 2 1 0.18a 4 2 2 3 6 2 n 1 1 4 Free Particle d2 dx 2 2 Hˆ 2m k2 2 E 2m d 2 2mE dx 2 2 ( x) A e ( x, t ) A e d2 2 ( x) dx 2 k ( x) 0 ikx ikx it e A e ikx (t ) eit ikx it A e e Two travelling waves moving in the opposite direction with velocity v. k 2mE 2 2m mv2 m2 v2 mv p 2 2 2 2 k is determined by the initial velocity of the particle, which can be any value as there are no constraints imposed on it. This implies that k is a continuous variable, which further implies that E , and are also continuous. This is exactly the same as the classical free particle. Probability Distribution of a Free Particle ( x) A e ikx x Wavefunctions cannot be normalized over Let’s consider the interval P( x) L x L * ( x) ( x) L * ( x) ( x)dx L A A e ikx eikx dx L L L A A e ikx eikx A eikx A eikx A e ikx A eikx dx L 1 L dx 1 2L L The particle is equally likely to be found anywhere in the interval Classical Limit Probability distribution becomes continuous in the limit of infinite n, and also with limited resolution of observation. 15_04fig_PChem.jpg Particle in a Two Dimensional Box Hˆ ( x, y ) E ( x, y ) a,b 0,b y 2 Hˆ 2m d2 d2 ˆ dx 2 dy 2 V ( x, y) x 0,0 a,0 0, 0 x, y a, b 0 ˆ V ( x, y ) x, y a, b & x, y 0, 0 ( x, y) 0 for x, y a, b & x, y 0,0 If ( x, y) ( x) ( y) ( x) 0 for x a & x 0 ( y) 0 for y b & y 0 15_p19_PChem.jpg Particle in a Two Dimensional Box 2 2 2 2 d d Hˆ Hˆ x Hˆ y 2 2m dx 2m dy 2 For 0 x, y a, b Hˆ ( x, y) Hˆ x Hˆ y ( x) ( y) E ( x) ( y) 2 d2 2 d2 ( x) ( y) ( x) ( y) E ( x) ( y) 2 2 2m dx 2m dy 2 d2 2 d2 ( y) ( x ) ( x) ( y) E ( x) ( y) 2 2 2m dx 2m dy 2 d d ( y) ( x) 2 2 2 2 dx dy E 2m ( x ) 2m ( y ) 2 15_p19_PChem.jpg Particle in a Two Dimensional Box d2 ( x) 2 2 dx Ex 2m ( x ) d2 ( y) 2 2 dy Ey 2m ( y ) 2 d2 ( x) Ex ( x) 2 2m dx 2 d2 ( y) E y ( y) 2 2m dy n y y 2 n ( y) sin( ) nx x 2 nx ( x) sin( ) a a nx 2 h 2 Enx 8ma 2 y Eny n y y nx x 2 ( x, y ) sin( )sin( ) a b ab b b ny 2 h2 8mb 2 2 2 n h nx y E 2 2 8m a b 2 Particle in a Square Box 2 13 1 n y y nx x 2 ( x, y ) sin( )sin( ) a a a 0 3 10 h2 2 2 E n n y 2 x 8ma 3 1 8 2 1 2 2 3 Quantum Numbers Number of Nodes 2 26 2 5 1 5 Energy 4 1 1 2 Particle in a Three Dimensional Box Hˆ ( x, y, z ) E ( x, y, z ) 2 Hˆ 2m d2 d2 d2 ˆ dx 2 dy 2 dz 2 V ( x, y, z ) 0, 0, 0 x, y a, b, c 0 ˆ V ( x, y , z ) x, y, z a, b, c & x, y, z 0, 0, 0 Hˆ ( x, y, z ) Hˆ x Hˆ y Hˆ z ( x) ( y ) ( z ) Ex E y Ez ( x) ( y ) ( z ) Particle in a Three Dimensional Box 2 d2 ( x) Ex ( x) 2 2m dx nx x 2 nx ( x) sin( ) a a nx 2 h 2 Enx 8ma 2 n y y 2 d ) ( y) E y ( y) n ( y) sin( 2 b b 2m dy ny 2 h2 2 2 y d ( z ) Ez ( z ) 2 2m dz 2 2 nz z 2 nz ( z ) sin( ) c c Eny nz 2 h2 Enz 8mc 2 n y y nx x nz y ( x, y , z ) sin( )sin( )sin( ) a b c abc 2 2 2 h2 nx 2 ny nz 2 E 2 2 2 8m a b c 8mb 2 Free Electron Models R 6 electrons R L 2 2 nh En 8mL2 n n h E 8mL2 2 L 2 H 2 LUMO E HOMO nL nH 1 nL2 nH2 2nH 1 2nH 1 h2 E 8mL2 Free Electron Models 2nH 1 h2 hc E h 2 8mL E 2 2 1 6.626 10 34 kgm / s 2 2 8(9.11 1031 kg )(723 1012 m) 2 5.76 1019 J hc 6.626 10 Js 2.99 10 E 6.23 10 J 34 8 m / s 19 max nH = 2 345 nm nH = 3 375 nm nH = 4 390 nm 16_01tbl_PChem.jpg 3.44 107 m Particle in a Finite Well 2 Hˆ K Vˆ ( x) 2m H n ( x) En n ( x) a a x 0 2 2 ˆ V ( x) Vo x a & x a 2 2 a a For x 2 2 2 d2 ( x) En n ( x) 2 n 2m dx n x n ( x) C cos( ) a d2 ˆ dx 2 V ( x) Particle in a Finite Well a a For x & x 2 2 Limited number of bound states. WF penetrates deeper into barrier with increasing n. 2 d2 2m dx 2 V0 n ( x) En n ( x) d 2 2m dx 2 2 V0 En n ( x) 0 2m 2 V0 En if En Vo ( x) Ae x Be x for x a / 2 x ( x) Ae Be x for x a / 2 Classically forbidden region as KE < 0 when Vo > En A,B, A’ B’ and C are determined by Vo, m, a, and by the boundary and normalization conditions. Core and Valence Electrons Strongly bound states (core) Weakly bound states (valence) – W.Fns. are confined within the boundary - Localized. - Have lower energy - W.Fns. extend beyond boundary. - Delocalized - Have high energy. - Overlap with neighboring states of similar energy Two Free Sodium Atoms In the lattice xe-lattice spacing 16_03fig_PChem.jpg Conduction Consider a sodium crystal sides 1 cm long. Each side is 2X107 atoms long. Unbound states 2n 1 h2 E 2n 1 (6.03 1034 J ) 2 8mL Energy spacing is very small w.r.t, thermal energy, kT. E kT Valence States (delocalized) Bound States (localized) 106 Energy levels form a continuum Unoccupied Valence States - Band Occupied Valence States- Band electrons flow to + 16_05fig_PChem.jpg Sodium atoms increased occupation of val. states on + side Tunneling ( x) Ae x 1 Decay Length = 1/ 2 2m V0 En The higher energy states have longer decay lengths The longer the decay length the more likely tunneling occurs The thinner the barrier the more likely tunneling occurs 16_08fig_PChem.jpg Scanning Tunneling Microscopy Tip Surface work functions no contact Contact Tunneling occurs from tip to surface Contact with Applied Bias 16_09fig_PChem.jpg Scanning Tunneling Microscopy 16_11fig_PChem.jpg Tunneling in Chemical Reactions 16_13fig_PChem.jpg Quantum Wells States are allowed Empty in Neutral X’tal. B. Gap Al doped GaAs > B.Gap GaAs No States allowed C. Band GaAs < C. Band Al Doped GaAs States Allowed Fully occupied e’s in CB of GaAS in energy well. 3D Box a = 1 to 10 nm thick b = 1000’s nm long & wide Alternating layers of Al doped GaAs with GaAs 2 2 h 2 nx 2 ny nz E 2 8m a b 2 h2 E 8ma 2 nx 2 ny 2 nz 2 10002 1 Eny ,nz Enx h2 nx 2 8ma 2 1D Box along x !! Energy levels for y and z - Continuous Energy levels for x - Descrete 16_14fig_PChem.jpg Quantum Wells finite barrier E h2 2 2 E n n x ,VB 2 x ,CB 8ma h n 4ma 2 2 x ,CB n 2 x ,VB 4mca 2 h nx2,CB nx2,VB QW Devices can be manufactured to have specific frequencies for application in Lasers. Eex>Band Gap energy GaAS Eex<Band Gap energy Al doped GaAS 16_14fig_PChem.jpg Quantum Dots Crystalline spherical particles1 to 10 nm in diameter. Band gap energy depends on diameter Easier and cheaper to manufacture 3D PIB 16_16fig_PChem.jpg Quantum Dots 16_18fig_PChem.jpg
© Copyright 2026 Paperzz