October 6, 2013 Tongjia Shi Moments of the Length of k th Shortest Cycle 1 1.1 Random z-permutation as Unit Poisson Process Like for the longest cycles, consider a unit poisson process on the real line. Let j−1 k X z tj (z) = θ , k = 1, 2, 3, · · · . k k=1 and t∞ (z) = lim tj (z) = θ log j→∞ 1 . 1−z Then there is a natural coupling between the unit poisson process on [0, t∞ (z)] and the (θ-biased) random z-permutation. If there are q jumps in the j th interval then draw q cycles with length j. The probability density at t of the rth jump of the Poisson process on [t0 , t∞ (z)] is e−t tr−1 , (r − 1)! −∞ < t ≤ t∞ (z). The mth moment of the length of the rth shortest cycle is then Z tj+1 (z) ∞ X tr−1 m m Ez [(Sr ) ] = j e−t dt. (r − 1)! tj (z) j=1 1.2 Change of variable Make a change of variable ∞ Z t∞ (z) − t = θE(x) = x Let z = e−s , e−y dy. y 0 < s < ∞. Since t∞ (e−s ) − tj (e−s ) = θ ∞ −ks X e k=j and E(js) < ∞ −ks X e k=j k j , < E((j − 1)s), 1 j = 1, 2, · · · j = 1, 2, · · · , there exists xj (s) such that (j − 1)s < xj (s) < js and ∞ −ks X e = E(xj (s)). k k=j So we have Ez [(Sr )m ] = ∞ X jm Z xj+1 (s) xj (s) j=1 = (1 − z) θ ∞ X j m Z xj+1 (s) xj (s) j=1 1.3 eθE(x)−t∞ [t∞ − θE(x)]r−1 θe−x dx (r − 1)! x [t∞ − θE(x)]r−1 θeθE(x)−x dx (r − 1)! x Derivation Using Tauberian Theorem Notice that ∞ ∞ X X [xj (s)]m µj < Ez [(Sr )m ] < [xj+1 (s)]m µj , j=1 j=1 with Z xj+1 (s) µj = e−θE(x) xj (s) E(x)r−1 θe−x dx. (r − 1)! x Assuming m are θ are not both one. This is an approximation of the Riemann integral as s → 0. So s/(1 − z) → 1, x1 (s) → 0 and (1 − z)m θ lim Ez [(Sr )m ] = (1 − z)θ ln z→1 m! where θ Hr,m θ = (r − 1)! Z ∞ 0 1 1−z r−1 θ Hr,m xm−1 θE(x)−x e dx. m! We rewrite this as (1 − z)m−θ ln lim z→1 m! 1 1−z −(r−1) 2 θ Eθz [(Sr )m ] = Hr,m We will now use Tauberian Theorems. First, −(r−1) (1 − z)m−θ 1 θ Hr,m = lim ln Eθz [(Sr )m ] z→1 m! 1−z −(r−1) X ∞ 1 Γ(n + θ) (1 − z)m−θ ln (1 − z)θ z n En [(Sr )m ] = lim z→1 m! 1−z n!Γ(θ) n=0 −(r−1) ∞ X Γ(n + θ) 1 m m = lim zn En [(Sr ) ](1 − z) ln z→1 m!n!Γ(θ) 1−z n=0 Since the coefficients of z n are nonnegative, we have n X Γ(n + θ) θ En [(Sr )m ] ∼ Γ(m + 1)−1 nm ln(n)r−1 Hr,m , m!n!Γ(θ) n → ∞. k=0 Now, we will show that Γ(n + θ) En [(Sr )m ] is nondecreasing in n. This is m!n!Γ(θ) equivalent to (n + 1)En [Srm ] ≤ (n + θ)En+1 [Srm ]. Notice that En [Srm ] = En+1 [En [Srm ]] Sr n + θ + 1 − Sr m m ≤ En+1 (Sr − 1) − Sr n+θ+1 n+θ+1 mEn+1 [Srm ] ≤ En+1 [Srm ] + n+θ+1 So we only need 1−θ mEn+1 [Srm ] ≤ , n+θ (n + θ + 1)En+1 [Srm ] which is true for sufficiently large n. Hence Γ(n + θ) θ En [(Sr )m ] ∼ Γ(m+1)−1 [mnm−1 ln(n)r−1 +nm−1 ln(n)r−2 ]Hr,m , m!n!Γ(θ) m nθ Sr θ En ∼ mΓ(θ)Hr,m , n → ∞. r−1 (ln n) n In fact the right hand side is a constant, so m Z ∞ m−1 nθ θ Sr x lim En = mΓ(θ) eθE(x)−x dx. n→∞ (ln n)r−1 n (r − 1)! 0 m! 3 n → ∞. Rewriting this we get nθ En n→∞ (ln n)r−1 lim 1.4 Sr n m = Γ(1 + θ) (r − 1)! Z 0 ∞ xm−1 θE(x)−x e dx. (m − 1)! Special Cases When θ = 1 and m 6= 1. The mth moment of the rth shortest cycle (in a unbiased random permutation) satisfies m Z ∞ Sr 1 xm−1 E(x)−x n = E e dx. lim n n→∞ (ln n)r−1 n (r − 1)! 0 (m − 1)! agreeing with Shepp and Lloyd’s result. When θ = 1/2. The expected length of the shortest cycle is (m = 1, r = 1) √ Z ∞ √ Sr π lim nEn = eE(x)/2−x dx. n→∞ n 2 0 agreeing with Pippenger’s result. 4
© Copyright 2026 Paperzz