Theory without small parameter: How should we proceed? • Identify important physical principles and laws to constrain non-perturbative approximation schemes – From weak coupling (kinetic) – From strong coupling (potential) • Benchmark against “exact” (numerical) results. • Check that weak and strong coupling approaches agree at intermediate coupling. • Compare with experiment Two-Particle Self-Consistent Approach (U < W) - How it works • General philosophy – Drop diagrams – Impose constraints and sum rules (No adjustable parameter) • Conservation laws • Pauli principle ( <ns2> = <ns> ) • Local moment and local density sum-rules • Get for free: • Mermin-Wagner theorem • Kanamori-Brückner screening • Consistency between one- and two-particle SG = U<ns n-s> Vilk, AMT J. Phys. I France, 7, 1309 (1997); Allen et al.in Theoretical methods for strongly correlated electrons also cond-mat/0110130 (Mahan, third edition) Benchmarks Proof that it works (comparisons with QMC) Notes: -F.L. parameters n = 0.20 n = 0.45 U=8 n = 1.0 0.4 U=8 2 n = 0.26 (a) n = 0.60 U = 4 n = 0.94 n Ssp(q) n Sch(q) -Self also Fermi-liquid 0.0 (c) n = 0.20 n = 0.45 (b) 0 2 n = 0.19 n = 0.33 (d) U>0 b=5 8X8 ( n = 0.80 U=4 0.4 (0.0) ( 0.0 (0,0) q (0,0) 0 QMC + cal.: Vilk et al. P.R. B 49, 13267 (1994) q Tmf TX 16 U=4 n=1 n=1 Monte Carlo 12 4x4 sp S () 6x6 8x8 8 10x10 12x12 ~ expC(T ) / T 4 0 0.0 0.2 0.4 0.6 0.8 T Calc.: Vilk et al. P.R. B 49, 13267 (1994) QMC: S. R. White, et al. Phys. Rev. 40, 506 (1989). O ( N ) A.-M. Daré, Y.M. Vilk and A.-M.S.T Phys. Rev. B 53, 14236 (1996) 1.0 Double occupancy : 0.25 U=2 0.20 0.15 0.10 U=4 0.05 0.00 0 1 This work, Nc=36 This work, Nc=64 Moukouri Jarrell, Nc=36 Moukouri Jarrell, Nc=64 2 3 S. Moukouri and M. Jarrell, PRL 87, 167010 (2001) Kyung et al. PRL 90, 099702 (2003), 4 T Proofs... U=+4 b (,0) TPSC Monte Carlo Many-Body (0,0) Flex (0,) ( 4 , 2) ( 4, 4) ( 2 , 2) (0, ) (0,0) -5.00 0.00 5.00 -5.00 0.00 5.00 /t Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000). -5.00 0.00 5.00 Benchmark: d-wave superconductivity dx -y -wave susceptibility for 6x6 lattice 2 b=4 L=6 2 0.6 2 U=4 b=4 b=3 b=2 b=1 0.5 d 3 b 2 1 cd 4 U = 0, 0.7 x -y U=0 U=4 U=6 U=8 U = 10 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 1.00.10 0.8 0.6 0.4 0.2 0.0 cd 2 0.4 0.3 0.2 0.1 0.0 0.2 0.4 0.6 0.8 1.0 Doping QMC: symbols. Solid lines analytical Kyung, Landry, A.-M.S.T., Phys. Rev. B (2003) dx -y -wave susceptibility for 6x6 lattice 2 b 2 1 L=6 2 2 U=4 b=4 b=3 b=2 b=1 0.5 d 3 b=4 0.6 cd 4 U = 0, 0.7 x -y U=0 U=4 U=6 U=8 U = 10 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 1.00.10 0.8 0.6 0.4 0.2 0.0 cd 2 0.4 0.3 0.2 0.1 0.0 0.2 0.4 0.6 0.8 1.0 Doping QMC: symbols. Solid lines analytical Kyung, Landry, A.-M.S.T., Phys. Rev. B (2003) 0.7 U = 0, dx -y -wave susceptibility for 6x6 lattice 2 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 1.00.10 0.8 0.6 0.4 0.2 0.0 b=4 L=6 2 x -y 2 0.6 U=0 U=4 U=6 U=8 U = 10 cd 2 0.5 d 3 b 2 1 b=4 b=3 b=2 b=1 0.4 cd 4 U=4 0.3 0.2 0.1 0.0 0.0 QMC: symbols. Solid lines analytical. 0.2 0.4 0.6 0.8 Doping Kyung, Landry, A.-M.S.T. PRB (2003) 1.0 0.08 U=4 U=6 0.07 0.06 Tc 0.05 0.04 DCA Maier et al. cond-mat/0504529 0.03 0.02 0.01 0.00 0.00 L = 256 0.05 0.10 0.15 0.20 Doping Kyung, Landry, A.-M.S.T. PRB (2003) 0.25 Pseudogap near optimal doping in edoped cuprates TPSC H ijt i,j c c c U i n in i i j jc i t’’ fixed t’ U t t’=-0.175t, t’’=0.05t t=350 meV, T=200 K Weak coupling U<8t n=1+x – electron filling 15% doping: EDCs along the Fermi surface TPSC Exp Umin< U< Umax Umax also from CPT Armitag e et al. PRL 87, 147003; 88, 257001 Hankevych, Kyung, A.-M.S.T., PRL, sept. 2004 15% doped case: EDCs in two directions TPSC Exp Exp Hankevych, Kyung, A.-M.S.T., PRL (2004). Fermi surface plots Hubbard repulsion U has to… U=5.75 U=6.25 be not too large 15% U=6.25 10% Hankevych, Kyung, A.-M.S.T., PRL, sept. 2004 U=5.75 increase for smaller doping B.Kyung et al.,PRB 68, 174502 (2003) Recent confirmation with KR slave-bosons Yuan, Yuan, Ting, cond-mat/0503056 Hot spots from AFM quasi-static scattering Pseudogap temperature and QCP Prediction Matsui et al. PRL (2005) Verified theo.T* at x=0.13 with ARPES ΔPG≈10kBT* comparable with optical measurements Hankevych, Kyung, A.-M.S.T., PRL 2004 : Expt: Y. Onose et al., PRL (2001). Observation Matsui et al. PRL 94, 047005 (2005) Reduced, x=0.13 AFM 110 K, SC 20 K Weak and strong-coupling mechanism for pseudogap, see poster by Hankevych, Kyung, Daré, Sénéchal, Tremblay Liang Chen Yury Vilk Steve Allen François Lemay Samuel Moukouri David Poulin Hugo Touchette J.-S. Landry M. Boissonnault Alexis Gagné-Lebrun A-M.T. Alexandre Blais Vasyl Hankevych K. LeHur C. Bourbonnais R. Côté Sébastien Roy Sarma Kancharla Bumsoo Kyung D. Sénéchal Maxim Mar’enko C’est fini… enfin
© Copyright 2026 Paperzz