University of Paris-Sud Thermal dissipation and self-heating at nanometer-scale in silicon T.T.Trang NGHIEM, Jérôme SAINT-MARTIN, Philippe DOLLFUS 1 2 CONTEXT Miniaturization of transistors at the nanoscale. The local self-heating, due to the emission of phonons by the hot carriers can lead to reductions in performance. [Pop et al., 2001. IEDM Technical Digest. International The theoretical study of these phenomena at the nanoscale is not possible with macroscopic models. To evaluate the phonon generation by electron-phonon interactions in semiconductor → MC method is efficient. Model of non-equilibrium phonon transport and phonon/phonon interactions. 3 OUTLINE Phonon generation in DG-MOSFET • Monte Carlo (MC) simulation of BTE for electrons • Phonon generation computed by including electron-phonon scattering Heat transport in DG-MOSFET • Thermal transport model : Direct solution of the BTE for phonons • Temperature distribution and non-equilibrium transport Conclusion BTE for electron Approche semi-classic -> Fct de distribution f(r,k,t) Evolution de f(r,k,t) -> BTE 1 f f v r f F k f t t v k E k with E(k) is the dispersion relation F k t applied force G r , k ,t Generation /recombinaison net rate coll Variation of f due to the collisions Time relaxation time: f t f f equilibrium coll Direct resolution vs. Stochastic resolution + For electron: informatics resource cost (3 directions in reciprocal space, even in 2D real space) -> stochastic resolution (suitable for device simulation (even in 3D)). + For phonon: no force -> 2D real space -> could be resolved by direct resolution. ELECTRON TRANSPORT BY MC SIMULATION FOR PHONON GENERATION BTE -> N grand eq. Newtons Analytic description of E(k) Particle MC Method dk F dt dr 1 Particle trajectories k E v ( k ) (propagation + collisions) dt Scattering rates: i k during Dt Electric force F = q E Density calculation Self consistent loop each Dt Poisson equation Random selection: • Time of free light tv •Type of scattering • Effect of scattering (r ).V (r, t ) (r, t ) Modelisation: • Dispersion relation • Scattering rate ELECTRON TRANSPORT BY MC SIMULATION FOR PHONON GENERATION Electron dispersion Vallée Δ : 6 non-parabolic ellipsoidal bands kt2 kl2 Ek 1 Ek 2 mt ml 2 ml = 0.9163m0 mt = 0.1905m0 = 0.5 eV-1 • Intra-valley scattering → acoustic phonon of small wavevector (Normal process). • Inter-valley scattering → f- and g-type phonon (Umklapp process). • Phonon type and energy are given by the selection rules : g-TA 11.4 meV, g-LA 18.8 meV, g-LO 63.2 meV, f-TA 21.9 meV, f-LA 46.3 meV, f-TO 59.1 meV. MONACO: All electron-phonon inter-valley interaction is treated inelastically. Phonon w(q) dans MONACO In MONACO Ω (rad/s) Quadratic dispersion Quadratic and isotropic dispersion relation : w w0 vs q cq 2 Optical type Acoustic type 0 E. Pop et al., JAP 2004 q (m-1) 2 a Group velocity: Vg d dq VLO,TO are verry small - > The contribution of optical modes in heat transport could be neglect. Electron- phonon interaction • The interaction which electron suffers are treated as perturbations ??? • Density of probability in unit of time scat 1 i DP2 N q g E q 2 2 i =1 correspond to an emission, i = -1 correspond to an absorption; g(E) is density of state of the final state. • Deformation potential : DP = D0 + D1*kP When the selection rules forbid interaction with the term of order 0, they allow it by order 1. g-TA g-LA g-LO f-TA f-LA f-TO ħω 11.4 meV D1 3.0 eV ħω 18.8 meV D1 3.0 eV ħω 63.2 meV D0 3.4x108 eV/cm ħω 21.9 meV D1 3.0 eV ħω 46.3 meV D0 3.4x108 eV/cm ħω 59.1 meV D0 3.4x108 eV/cm 9 PHONON GENERATION DEFORMATION POTENTIALS (108 eV/CM) scat 1 DP2 N q 2 1 g E q 2 Ref. f-TA f-LA f-TO g-TA g-LA g-LO Nash 1974 0.35 1.70 6.85 0.6 0.7 5.33 Canali 1975 0.15 3.4 4 0.5 0.8 3 Joergensen 1978 __ 4.3 2 0.65 __ 7.5 Brunetti 1981 0.3 2 2 0.5 0.8 11 Jacoboni1983, Fischetti 1991 0.3 2 2 0.5 0.8 11 (18.96) (47.39) (59.03) (12.06) (18.53) (62.04) Yamada 1994 2.5 __ 8 __ 4 8 Pop. 0.5 3.5 1.5 0.3 1.5 6 2004 (used) (19) (51) (57) (10) (19) (62) Obukhov 2009 ~0 2.51 4.44 ~0 ~0 4.73 Wang D1=0.18 (18.7) D0=1.12 (44.9) D0=4.24 (57.7) D1=0.61 (11.9) D1=1.22 (19.5) D0=4.18 (62.1) D1=3 .47 D0=3.4 D0=3.4 D1=3.47 D1=3.47 D0=3.4 (21.9) (46.3) (46.3) (11.4) (18.8) (63.2) 2011 Our simulation Silicon bars under constant field • Si bars doped to 1017 cm-3. 15 nm 1017 cm-3 F = cst • Phonon generation net in Si bars under different field. • Compare the dissipation by e-ph interaction with the Joule effect. PHONON GENERATION IN SILICON BARS Net phonon number generated by electrons in silicon bars doped to 1017 cm-3 Information on the energy spectra of phonon according to phonon types • At the steady-state, Joule effect is given either by + the sum of the four dissipation modes + J.E. • The highest contributions come from LA and TO. 11 PHONON GENERATION 12 IN ULTRA THIN DG-MOSFET S 1020 D cm-3 1016 cm-3 1020 cm-3 16nm Vg = 0.5V, Vds = 0.7V Spatial distribution of emitted phonons 10nm 10nm • Phonon absorption in the source and channel. • Phonon emission mainly in the drain. 5 nm PHONON GENERATION 13 IN ULTRA THIN DG-MOSFET S D 5 nm 16nm 10nm MC simulation shows that the heat is dissipated far into the drain. Heat generation rate (W/cm3) 10nm The classical (drift-diffusion) result: a peak of dissipation is at the drainend of channel and there is no generation in the drain. X (nm) 14 HEAT TRANSPORT THERMAL TRANSPORT MODEL Boltzmann transport equation (BTE) per mode in the relaxation time approximation (RTA) v (q).r N (r , q) Fourier equation N (r ,q) NT scatt (q) (r ,q) Ge ph (q) .D r Tscatt (r ) Pth ( r ) 0 BTE using the 1st order spherical harmonic expansion N ( r , q ) N s ( r , q) p pVg q r N s (r , q) q N Tscatt ( q) exp 1 k T B scatt 1 v q . q 2 D r 1 N (r , q) N (r , q) G (r , q) q s T e ph 3 scatt • Fourier Eq. → Tscatt used in RT calculation for BTE → phonon distribution N r , q •Total number of phonon N r , q → Effective temperature Teff(r) q 15 RELAXATION TIME MODEL Holland – Asen Palmer Umklapp processes Normal processes G ω1,k1 Conservation d’énergie q3 q1 q2 Holland q3 q1 q2 PRB 1963 B T ( L A , N o r m a l U m k l a p p ) 1 2 3 N UL B T ( T A , N o r m a l ) 1 4 NT N 0 ( T A ,U m k la p p p o u r 1/2) 1 2 U B / s i n h T A ,U m k la p p p o u r 1/2) ( T U T k B Asen-Palmer PRB 1997 L1 BL 2T 3 ( LA, Normal Umklapp) T1 BT Te /T 2 (TA, Normal Umklapp) 1 ω2,k2 ω3,k3 q3 G q1 q2 Vecteur du réseau réciproque HEAT TRANSPORT 16 OPTICAL AND ACOUSTIC PHONON SUB-SYSTEM EVOLUTION Phonon dispersion Group velocity of optical phonon 0. Simplied BTE using the 1st order spherical harmonic expansion for optical phonon N (r , q) N (r , q) G (r , q) q s Tscatt e ph fTA = f1 Decay of L/TO to L/TA Probability TA+LA fLA = f2 + f3 BTE using the 1st order spherical harmonic expansion for acousptic phonon LA+ LA TA+LA Phonon energy (eV) v q . q 2 D r 1 N (r , q) s 3 N (r , q) G (r , q) q f LTO L /TAGe LTO q Tscatt e L /TA 17 HEAT TRANSPORT Lx = Ly = 3x10-6 m Nx = 100, Ny = 20 Tg = 310 K Td = 300 K Linear solution (well known) for a bar with ΔT = 10K. T = 300 K P = 6.7e17 W/m3 F=50kV for Si 1e17 m-3) T = 300 K Obtained temperature with a power of 6.7x1014 W/cm3 in the middle of bar. 18 HEAT TRANSPORT IN THIN DG - MOSFET T = 300 K T = 300 K Adiabatic condition S C D Adiabatic condition 36 nm Holland 36 nm 36 nm Temperature of different phonon modes in DG at Vg=0.5V, Vds=0.7 V Asen-Palmer • Acoustic phonons have the main role in heat transport. • Bottleneck effect of optical phonons. HEAT TRANSPORT 19 IN THIN DG - MOSFET Holland Asen-Palmer Effective temperatures as a function of Vds at Vg = 0.5V The higher Vds is, the higher the temperature is. 20 HEAT TRANSPORT NON-EQUILIBRIUM TRANSPORT Vg=0.5V, Vds=0.7 V At the drain S C D Far-from-equilibrium state of 4 phonon modes at the drain, especially LO & TO. 21 HEAT TRANSPORT NON-EQUILIBRIUM TRANSPORT Vg=0.5V, Vds=0.7 V 25 nm from the source S C D Go far from the source (or the drain), the 4 phonon modes tend to the equilibrium state (Bose-Einstein distribution). A FAIRE … • BTE sans approximation : v (q).r N (r , q) N (r ,q) NT scatt (r ,q) (q) • Coupler électron-phonon dans Monaco e-MC Net phonon generation Entrée pour BTE • Teff de phonons • Distribution de phonon Injecter T et la distribution de phonon dans chaque maille. • Scattering e-ph pour e-MC. • Teff d’électrons Ge ph q
© Copyright 2026 Paperzz