Faculty of Engineering, Computer Science and Psychology Module Handbook Master’s Course Cognitive Systems (Study and Examination Regulations 06.06.2014) Winter Term 2015 Based on Rev. 1639. Last changed 12.10.2015 at 07:36 by vpollex. Generated 16.10.2015 at 13:11 o’clock. Contents 1 Basic Subjects 1.1 Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Introduction to Cognitive Psychology for Non-Psychologists . . . . . 1.1.2 Introduction to Experimental Methods for Non-Psychologists . . . . . 1.2 Computer Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Formal Foundations of Computer Science . . . . . . . . . . . . . . . 1.2.2 Fundamentals of Interactive Systems – Design, Analysis, and Usability 1.2.3 Introduction to Computer Science for Psychologists . . . . . . . . . . . . . . . . . 4 4 4 6 8 8 10 12 2 Core Subjects 2.1 Cognitive Systems I – Concepts, Modeling, Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Cognitive Systems II – Higher-Order Cognitive Competencies . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Cycle of Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 16 18 3 Special Subjects 3.1 Algorithms for Knowledge Representation . . . . . . . . . . . . . . . . 3.2 Big Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Computergrafik I - Grundlegende Konzepte . . . . . . . . . . . . . . . . 3.4 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Decision Making and User Experience in Human-Technology-Interaction 3.7 Dialogue Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Einführung in die Künstliche Intelligenz . . . . . . . . . . . . . . . . . . 3.9 Foundations of Semantic Web Technologies . . . . . . . . . . . . . . . 3.10 Hands On: Mobile Assessment of Biosignals - Principles and Application 3.11 Information Processing in Neural Systems . . . . . . . . . . . . . . . . 3.12 Information Retrieval and Web Mining . . . . . . . . . . . . . . . . . . 3.13 Intelligente Handlungsplanung . . . . . . . . . . . . . . . . . . . . . . 3.14 Introduction to Data Science . . . . . . . . . . . . . . . . . . . . . . . 3.15 Mobile and Ubiquitous Computing . . . . . . . . . . . . . . . . . . . . 3.16 Self Regulation: Development, Neuro-Cognition and Psychopathology . 3.17 Specialization in Cognitive Psychology . . . . . . . . . . . . . . . . . . 3.18 Usability Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.19 Vision in Man and Machine . . . . . . . . . . . . . . . . . . . . . . . . 4 Applied Subjects 4.1 Cognitive Vision . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Project Cognitive Vision - Algorithms and Applications . 4.1.2 Project Computational Vision and Image Processing . . 4.1.3 Project and Seminar Visual Information Processing . . . 4.1.4 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Vision in Man and Machine (in Applied Subject) . . . . 4.2 Visual Computing . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Data Visualization . . . . . . . . . . . . . . . . . . . . . 4.2.2 Visual Computing . . . . . . . . . . . . . . . . . . . . . 4.3 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 Algorithms for Emotion Recognition in Human Computer 4.3.2 Neural Networks (in Applied Subject) . . . . . . . . . . 4.3.3 Pattern Recognition . . . . . . . . . . . . . . . . . . . . 4.3.4 Pattern Recognition and Machine Learning Algorithms . 4.3.5 Reinforcement Learning . . . . . . . . . . . . . . . . . . 4.4 Cognitive Ergonomics . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Instructional Design and Technology . . . . . . . . . . . 4.4.2 Project - Driver-Vehicle Interaction . . . . . . . . . . . . 4.4.3 Project Cognitive Ergonomics . . . . . . . . . . . . . . . 4.4.4 Psychology of Automation . . . . . . . . . . . . . . . . 4.4.5 Transportation Human Factors . . . . . . . . . . . . . . 4.5 Data Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.1 Big Data Analytics . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 22 24 26 28 30 32 34 36 38 39 41 44 46 48 50 52 53 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 57 57 59 61 63 65 67 67 69 71 71 73 74 75 77 79 79 81 83 84 86 87 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 4.7 4.8 4.5.2 Business Process Intelligence . . . . . . . . . . 4.5.3 Data Mining . . . . . . . . . . . . . . . . . . . 4.5.4 Information Retrieval and Web Mining . . . . . 4.5.5 Introduction to Data Science . . . . . . . . . . 4.5.6 Project Non-Traditional Database Architectures 4.5.7 Research Trends in Data Science . . . . . . . . User-Centered Planning . . . . . . . . . . . . . . . . . 4.6.1 Project User-Centered Planning . . . . . . . . . Semantic Web Technology . . . . . . . . . . . . . . . 4.7.1 Project Semantic Web Technologies . . . . . . Cognitive Smart Systems . . . . . . . . . . . . . . . . 4.8.1 Cognitive Smart Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 91 93 96 98 100 102 102 104 104 106 106 5 Interdisciplinary Subjects 108 5.1 Human-Computer Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.1.1 Mobile Mensch-Computer-Interaktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.1.2 Project - Design, Implementation and Evaluation of Dialogue Systems . . . . . . . . . . . . . . . . 110 5.1.3 Psychology of Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.1.4 Transportation Human Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2 Cognitive Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2.1 Cognitive Modelling for Computer Scientists and Psychologists . . . . . . . . . . . . . . . . . . . . 115 5.2.2 Computational Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2.3 Project Cognitive Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3 Cognitive Neuroscience - Experimental and Modeling Perspectives . . . . . . . . . . . . . . . . . . . . . . 121 5.3.1 Body and Mind: philosophisch–wissenschaftstheoretische Grundlagen der Cognitive and Neuro Sciences121 5.3.2 Cognitive and Neural Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.3.3 Project Psychophysical investigation of functions in perception, cognition and motor behavior . . . 125 5.3.4 Project and Seminar Visual Information Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.3.5 Psychophysics - Methods, Paradigms, and Experimentation . . . . . . . . . . . . . . . . . . . . . . 129 5.3.6 Seminar Computational modeling of cognitive functions . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3.7 Thinking about Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3.8 Topics in Cognitive Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.4 Cognitive Agents, Companions, and Cognitive Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.4.1 Cognitive Agents, Companions, and Mobile Apps in Healthcare . . . . . . . . . . . . . . . . . . . . 136 5.4.2 Project Cognitive Solutions for Mobile Guidance, Assessment and Crowd Sensing . . . . . . . . . . 138 5.4.3 Project Inreasing Patient Engagement through Cognitive Companions and Apps . . . . . . . . . . . 140 6 Final Thesis 142 6.1 Master’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3 1 Basic Subjects 1.1 Psychology 1.1.1 Introduction to Cognitive Psychology for Non-Psychologists Token / Number: 88csyneu German title: Einführung in die Kognitionspsychologie für Nichtpsychologen Credits: 8 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Anke Huckauf Training staff: Teaching staff from the Institute of Psychology and Pedagogy Integration of module into courses of studies: Cognitive Systems, M.Sc., Foundation Subject Psychology for Computer Scientists Requirements (contentual): None Learning objectives: The students can orient themselves in the sub-disciplines of psychology. They learn about basic phenomena, paradigms and concepts in all fields of cognitive psychology, which include psychophysics, perception, attention, consciousness, learning, memory, problem solving, language, emotion, motivation, and volition. Students know the empirical foundations of each research field. Content: - Psychophysics Perception and attention Learning and memory Language Motivation, volition, and emotion Literature: Will be announced at the beginning of the course. Basis for: This module provides the basis for all psychological modules. It also helps for any of the interdisciplinary topics that are scheduled later in the curriculum. Modes of learning and teaching: Lecture Introduction to experimental psychology: Perception and cognition, 2 SWS (N.N.) Lecture Introduction to experimental psychology: Language, emotion, motivation, and volition, 2 SWS (N.N.) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 180 h Sum: 240 h Course assessment and exams: The exams are oral or written depending on the number of participants. The exact mode is announced in the lectures. Requirements (formal): Bachelor in computer Science or related field Grading: The mark for the module is determined by the mean exam mark in both courses. 4 Basierend auf Rev. 1573. Letzte Änderung am 07.10.2015 um 22:59 durch mreichert. 5 1.1.2 Introduction to Experimental Methods for Non-Psychologists Token / Number: 88csyneu German title: Einführung in experimentelles Arbeiten für Nichtpsychologen Credits: 10 ECTS Semester hours: 7 Language: Englisch Turn / Duration: Every Winter Term / 2 Semester Module authority: Prof. Dr. Anke Huckauf Training staff: Teaching staff from the Insitute of Psychology and Pedagogy Integration of module into courses of studies: Cognitive Systems, M.Sc., Foundation Subject Psychology for Computer Scientists Requirements (contentual): None Learning objectives: The students can distinguish between various basic and advanced experimental designs related to cognitive psychology. They can further demonstrate practical research skills through their participation in research projects. The students know how to properly design and execute experimental studies. They understand and are able to apply basic descriptive and inferential statistical methods. Finally, students are able to select appropriate experimental methods including psychophysical approaches for certain research questions. Content: Theoretical bases of a quantitative approach to experimental research designs. Practical aspects of the sample, procedure, and analysis of experimental data collections in the laboratory and in applied settings. - Designing empirical studies - Correlative and experimental set-ups - Descriptive and inferential statistics Literature: Will be announced at the beginning of the course Basis for: This module provides the basis for all psychological modules. It also helps for any of the interdisciplinary topics that are scheduled later in the curriculum. Modes of learning and teaching: Lecture Psychological Research Methods, 3 SWS, winter term (N.N.) Exercise Psychological Research Methods, 2 SWS, winter term (N.N.) Lecture Psychological Research Methods, 2 SWS, summer term (N.N.) Estimation of effort: Active Time: 100 h Preparation and Evaluation: 300 h Sum: 400 h Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the mark in the two exams. A grade bonus according to §13 (5) of the study and exam regulations cognitive systems is given if the exercises are passed successfully. 6 Basierend auf Rev. 1577. Letzte Änderung am 08.10.2015 um 08:27 durch vpollex. 7 1.2 Computer Science 1.2.1 Formal Foundations of Computer Science Token / Number: 88csyneu German title: Formale Grundlagen der Informatik Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Uwe Schöning Training staff: Prof. Prof. Prof. Prof. Integration of module into courses of studies: Cognitive Systems, M.Sc., Foundation Subject Computer Science for Psychologists Requirements (contentual): Introduction to Computer Science for Psychologists Learning objectives: The students are familiar and able to work with common mathematical and computer science formalisms describing sets, sequences, alphabets, and words. They are able to use these methods adequately. Furthermore, they are familiar with the use of formal grammars, automata, and graphs for modelling. Finally, they understand the concept of computability and its limits. Dr. Dr. Dr. Dr. Uwe Schöning Jacobo Torán Enno Ohlebusch Günther Palm Content: - Formal concepts: sets, sequences, functions, relations, words, and alphabets. - Formal grammars, languages, and automata as well as their properties and relations. Chomsky-hierarchy. Literature: - Lecture Notes - Sipser: Introduction to the Theory of Computation. Course Technology, 3rd edition, 2012 - Hopcroft, Motwani, Ullman: Introduction to Automata Theory, Languages, and Computation. Prentice Hall, 3rd edition, 2006 - Schöning, Kestler: Mathe-Toolbox. Lehmanns Media, 2. erw. Auflage, 2011 - Schöning: Theoretische Informatik - kurz gefasst. 5. Auflage, Spektrum, 2008 - Wegener: Theoretische Informatik. Teubner, 1993 - Blum: Einführung in Formale Sprachen, Berechenbarkeit, Informations- und Lerntheorie. Oldenburg, 2007 Basis for: The module helps for any of the interdisciplinary topics that are scheduled later in the curriculum. Modes of learning and teaching: Lecture Formal Foundations, 3 SWS (Prof. Dr. Uwe Schöning, Prof. Dr. Jacobo Torán, Prof. Dr. Enno Ohlebusch, Prof. Dr. Günther Palm) Exercise Formal Foundations, 1 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h 8 Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1602. Letzte Änderung am 08.10.2015 um 16:00 durch mreichert. 9 1.2.2 Fundamentals of Interactive Systems – Design, Analysis, and Usability Token / Number: 88csyneu German title: Grundlagen Interaktiver Systeme – Design, Analyse und Usability Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Prof. Dr. Enrico Rukzio Integration of module into courses of studies: Cognitive Systems, M.Sc., Foundation Subject Computer Science for Psychologists Requirements (contentual): None Learning objectives: The students acquire elementary concepts and methods for the design of interactive systems, particularly software systems. They can develop new solutions for the design of user interfaces and evaluate existing solutions for this. The necessary skills are developed on the basis of investigations of human perceptual and cognitive capabilities, generations of different interaction metaphors and the underlying techniques, as well as (formal) methods for the development and analysis of mechanisms in interaction and related mechanistic cognitive models. Content: - Introduction to HCI Perceptual and cognitive aspects of HCI Cognitive processes and interaction Empirical issues in the design of interactive systems The interface – input and output devices in HCI Interface design – dialog notations and interface formats Dialog notation – graphs, nets and graphical formats Interface design and cognitive modeling Literature: The following suggested literature is a selected sample as reference. Specific links to literature will be given in the beginning of the lecture. - A. Dix, J. Finlay, G.Abowd, R. Beale: Human-Computer Interaction. PrenticeHall, 1998 - J. Raskin: The Humane Interface. Addison-Wesley, 2000 - D. Benyon: Designing Interactive Systems. Pearson Education Ltd, 2010 Basis for: The module helps for any of the interdisciplinary topics that are scheduled later in the curriculum. Modes of learning and teaching: Lecture Fundamentals of Interactive Systems – Design, Analysis, and Usability, 2 SWS (Prof. Dr. Heiko Neumann, Prof. Dr. Michael Weber) Exercise Fundamentals of Interactive Systems – Design, Analysis, and Usability, 2 SWS (Prof. Dr. Heiko Neumann, Prof. Dr. Michael Weber, Nikolas Grottendieck) 10 Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1568. Letzte Änderung am 07.10.2015 um 22:39 durch mreichert. 11 1.2.3 Introduction to Computer Science for Psychologists Token / Number: 88csyneu German title: Einführung in die Informatik für Psychologen Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Jun.-Prof. Dr. Birte Glimm Training staff: Jun.-Prof. Dr. Birte Glimm Prof. Dr. Thom Frühwirth Integration of module into courses of studies: Cognitive Systems, M.Sc., Foundation Subject Computer Science for Psychologists Requirements (contentual): None Learning objectives: The students can describe the elementary concepts and methods of computer science. They can develop algorithms for small problems in a programming language using simple control structures (loops, conditionals). The students can list the basic data structures (arrays, lists, trees, graphs) and judge their suitability for certain situations. They can explain basic computational mechanisms and programming paradigms (imperative-, object oriented, and functional programming, modularisation, Divide-and-Conquer, iteration, recursion). Finally, they can name, describe, and apply standard algorithms for searching and sorting. Content: - Definition and properties of algorithms Number representations Elementary concepts, principles and methods of computer science Principles of computing components Principles of operating systems Principles of programming languages (syntax, semantics, elementary datatypes, data- and control structures) Literature: - Nell Dale and John Lewis. Computer Science Illuminated. Jones & Bartlett Learning. 2014. 5th edition. ISBN 978-1-4496-7284-3 Basis for: The module is the basis for the lecture “Formal Concepts and Foundations of Computer Science”. The module also helps for any of the interdisciplinary topics that are scheduled later in the curriculum. Modes of learning and teaching: Lecture Introduction to Computer Science for Psychologists, 2 SWS () Exercise Introduction to Computer Science for Psychologists, 2 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. 12 Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1577. Letzte Änderung am 08.10.2015 um 08:27 durch vpollex. 13 2 Core Subjects 2.1 Cognitive Systems I – Concepts, Modeling, Perception Token / Number: 88csy72405 German title: Kognitive Systeme I – Konzepte, Modellierung, Perzeption Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Prof. Prof. Prof. Prof. Integration of module into courses of studies: Cognitive Systems, M.Sc., Core Subject Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Requirements (contentual): None Learning objectives: The students can describe the core research topics of cognitive systems and apply the fundamental methodological concepts including experimental investigations. They can further list research and application-related questions concerning the different topics of cognitive systems research from different perspectives (i.e., empirical, modeling, and technical). Even further, the students can discuss specific aspects of detailed structure and function of cognitive systems and develop solutions for different sample questions. Content: Dr. Dr. Dr. Dr. Dr. Anke Huckauf Markus Kiefer Heiko Neumann Günther Palm Olga Pollatos The course program provides a first rigorous overview of topics introducing the field of Cognitive Systems. The topics are organized along the following areas and a general presentation of methodological and technical core principles: - Fundamentals - introduction and models - Basic methodology and technology - Perception and cognition 14 Literature: - The following suggested literature is a selected sample as reference. Specific links to literature will be given in the beginning of the lecture. M.W. Eysenck, M.T. Keane: Cognitive Psychology: A Student’s Handbook, 6th ed. Taylor & Francis Ltd, 2010 J. Ward: The Student’s Guide to Cognitive Neuroscience. Psychology Press, 2006 R Sun (ed.): The Cambridge Handbook of Computational Psychology. Cambridge Univ. Press, 2008 P.S. Churchland, T.J. Sejnowski: The Computational Brain. MIT Press, 1999 S.E. Palmer: Vision Science - Photons to Phenomenology. MIT Press, 1999 S. Russell, P. Norvig: Artificial Intelligence - A Modern Approach, 3rd Ed., Prentice-Hall, 2010 R. Morris, L. Tarassenko, M. Kenward: Cognitive Systems - Information Processing meets Brain Science, Elsevier, 2006 Basis for: – Modes of learning and teaching: Lecture Cognitive Systems – Concepts, Modeling, Perception, 3 SWS (members of the teaching staff) Exercise Cognitive Systems – Concepts, Modeling, Perception, 1 SWS (members of the teaching staff) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h. Sum: 180 h Course assessment and exams: The exams are oral or written depending on the number of participants. The exact modes are announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations in cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1601. Letzte Änderung am 08.10.2015 um 15:57 durch mreichert. 15 2.2 Cognitive Systems II – Higher-Order Cognitive Competencies Token / Number: 88csy72406 German title: Kognitive Systeme II – Höhere kognitive Fähigkeiten Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Martin Baumann Dr. Jenny Bittner Prof. Dr. Susanne Biundo-Stephan Jun.-Prof. Dr. Birte Glimm Prof. Dr. Anke Huckauf Prof. Dr. Wolfgang Minker Prof. Dr. Günther Palm Prof. Dr. Enrico Rukzio Integration of module into courses of studies: Cognitive Systems, M.Sc., Core Subject Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Requirements (contentual): The course builds upon the fundamental knowledge about cognitive systems, in particular, regarding cognitive models, basic methodology and technology, and perception and cognition as taught in the course “Cognitive Systems I – Concepts, Modeling, Perception”. Learning objectives: The students can describe the core research topics of cognitive systems and apply the fundamental methodological concepts including experimental investigations. They can list research and application-related questions concerning the different topics of cognitive systems research from different perspectives, namely empirical, modeling, and technical. Even further, the students can discuss specific aspects of detailed structure and function of cognitive systems and develop solutions for different sample questions. Content: The course program provides a first rigorous overview of topics introducing the field of Cognitive Systems. The topics are organized along the following areas with a focus on higher-order cognitive function: - Learning and instruction - Planning, decision-making & working memory - Interaction and communication 16 Literature: - The following suggested literature is a selected sample as reference. Specific links to literature will be given in the beginning of the lecture. M.W. Eysenck, M.T. Keane: Cognitive Psychology: A Student’s Handbook, 6th ed. Taylor & Francis Ltd, 2010 J. Ward: The Student’s Guide to Cognitive Neuroscience. Psychology Press, 2006 R Sun (ed.): The Cambridge Handbook of Computational Psychology. Cambridge Univ. Press, 2008 P.S. Churchland, T.J. Sejnowski: The Computational Brain. MIT Press, 1999 S.E. Palmer: Vision Science - Photons to Phenomenology. MIT Press, 1999 S. Russell, P. Norvig: Artificial Intelligence - A Modern Approach, 3rd Ed., Prentice-Hall, 2010 R. Morris, L. Tarassenko, M. Kenward: Cognitive Systems - Information Processing meets Brain Science, Elsevier, 2006 Basis for: – Modes of learning and teaching: Lecture Cognitive Systems II – Higher-Order Cognitive Competencies, 3 SWS (members of the teaching staff) Exercise Cognitive Systems II – Higher-Order Cognitive Competencies, 1 SWS (members of the teaching staff) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h. Sum: 180 h Course assessment and exams: The exams are oral or written depending on the number of participants. The exact modes are announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations in cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1572. Letzte Änderung am 07.10.2015 um 22:56 durch mreichert. 17 2.3 Cycle of Lectures Token / Number: 88csyneu German title: Ringvorlesung Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Martin Baumann Prof. Dr. Susanne Biundo-Stephan Prof. Dr. Thom Frühwirth Jun.-Prof. Dr. Birte Glimm Prof. Dr. Anke Huckauf Prof. Dr. Markus Kiefer Prof. Dr. Klaus Melchers Prof. Dr. Wolfgang Minker Prof. Dr. Heiko Neumann Prof. Dr. Günther Palm Prof. Dr. Harald C. Traue Integration of module into courses of studies: Cognitive Systems, M.Sc., Core Subject Requirements (contentual): None Learning objectives: The students can describe the core research topics of cognitive systems and specific aspects of their relation to basic science, technology and application. They can list research and application-related questions concerning the different topics from various perspectives. The students can present selected topics in the field of cognitive systems and discuss their impact. Content: Several lectures are presented that cover active research topics in the field of Cognitive Systems. A mentorium is run in parallel to these lectures supported by student mentors. They help guiding the participants during the semester with regard to the course program and presentations. Students meet with the lecturers after his/her presentation to discuss questions regarding the lecture but also to get information about related aspects regarding the master’s program in Cognitive Systems. Students are required to select a topic of their specific interest and get in touch with the particular lecturer to ask for additional literature. In a final poster presentation the students present their selected topic. Literature: Specific links to the literature regarding the lectures will be given by the lecturers. The following list serves as a generic overview to gather the scope of the research field: - C. Forsythe, M.L. Bernard, T.E. Goldsmith (eds.): Cognitive Systems - Human Cognitive Models in Systems Design. Lawrence Erlbaum Assoc., Publ., 2006 - R. Morris, L. Tarassenko, M. Kenward: Cognitive Systems: Information Processing Meets Brain Science. Academic Press, 2005 - J. Ward: The Student’s Guide to Cognitive Neuroscience. Psychology Press, 2006 18 Basis for: The module helps for any of the interdisciplinary topics that are scheduled later in the curriculum. Modes of learning and teaching: Lecture Cycle of Lectures, 2 SWS (members of the teaching staff) Exercise Mentorium, 2 SWS (members of the teaching staff, mentors) Estimation of effort: Active Time: 45 h Preparation and Evaluation: 135 h Sum: 180 h Course assessment and exams: All participants will actively participate in a poster presentation at the end of the term which is worth a certificate of successful attendance in this course. The posters will be graded by the lecturers. The participant is required to select a particular topic in Cognitive Science, as presented during this course. He/she will generate and present a poster at the end of the period of lectures in the winter term (February). During the preparation the candidate gets in touch with one particular lecturer of the program (candidate’s selection) to ask for literature and specific background material. Requirements (formal): None Grading: Basierend auf Rev. 1576. Letzte Änderung am 08.10.2015 um 08:09 durch mreichert. 19 3 Special Subjects 3.1 Algorithms for Knowledge Representation Token / Number: 88csy71815 German title: Algorithmen in der Wissensrepräsentation English title: Algorithms for Knowledge Representation Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Jun.-Prof. Dr. Birte Glimm Training staff: Dr. Yevgeny Kazakov Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Theoretische und Mathematische Methoden der Informatik Software-Engineering, M.Sc., Core Subject, Theoretische und Mathematische Methoden der Informatik Computer Science, M.Sc., Specialization Subject, Intelligente Systeme Computer Science, M.Sc., Specialization Subject, Theoretische Informatik Computer Science and Media, M.Sc., Core Subject, Theoretische und Mathematische Methoden der Informatik Computer Science and Media, M.Sc., Specialization Subject, Intelligente Systeme Computer Science and Media, M.Sc., Specialization Subject, Theoretische Informatik Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Basic programming skills and a good understanding of the development of algorithms. Basic knowledge of logic and automated reasoning from as taught in the lectures “Einführung in die Künstliche Intelligenz”, “Formale Grundlagen” or “Foundations of Semantic Web Technologies” are helpful but not required. Learning objectives: The students can specify knowledge in a formal way using First-Order and Description Logics. They can name the expressivity of the Description Logics used and estimate the resulting (theoretical) complexity of algorithms dor the typical reasoning problems. The students can compute entailed consequences of a knowledge base using different inference procedures. They can explain the advantages and disadvantages of the different algorithms and compare the algorithms with each other, e.g., regarding their worst-case or average-case complexity. The students can generalise the formal proofs of correctness, which allows them to obtain results also for different logic fragments. 20 Content: - Introduction to Description Logics as fragments of First-Order Logic - Properties od logics (finite model property, compactness, tree model property, ...) - Goals of automated deduction in knowledge representation (satisfiability, classification, entailment, . . . ) - Procedures for automated reasoning (tableau, hypertableau, resolution, consequence-based reasoning, automata) - Proof procedures (correctness and termination of the algorithms) - complexity of the algorithms Literature: - Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, Peter F. Patel-Schneider. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press. 2007. 2-te Auflage. ISBN 978-0521876254 - Uwe Schöning. Logik für Informatiker. Spektrum. ISBN 3-8274-1005-3 - Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer. ISBN 0-387-94593-8 - John Kelly. The Essence of Logic. Prentice Hall. ISBN 0-13-396375-6 Basis for: Master’s thesis in the area of intelligent systems and automated reasoning. Modes of learning and teaching: Lecture Algorithms for Knowledge Representation, 3 SWS (Dr. Yevgeny Kazakov) Exercise Algorithms for Knowledge Representation, 1 SWS (Dr. Yevgeny Kazakov) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations Informatik/Medieninformatik/Software Engineering/Cognitive Systems is given if the exercise class is passed successfully. Basierend auf Rev. 1422. Letzte Änderung am 09.04.2015 um 19:39 durch bglimm. 21 3.2 Big Data Analytics Token / Number: 88csyneu English title: Big Data Analytics Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Martin Theobald Training staff: Prof. Dr. Martin Theobald Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Informationssysteme Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Specialization Subject, Informationssysteme Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Specialization Subject, Informationssysteme Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Application Subject Data science Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Grundkenntnisse zu “Datenbanken und Informationssytemen” und “Data Science”, wie sie beispielsweise in der Vorlesung Einführung in Data Science vermittelt werden, sind von Vorteil. Learning objectives: Der Kurs vermittelt den Studierenden einen detaillierten Einblick in die Funktionsweise und die theoretischen Grundlagen zur skalierbaren Analyse und verteilten Verarbeitung von großen Datenmengen. Die Studierenden erkennen, welche Datenstrukturen und Algorithmen der verteilten Analyse von großen Datenmengen zu Grunde liegen. Des Weiteren sind die Studierenden in der Lage, komplexe Anwendungen mittels dieser Ansätze zu realisieren. 22 Content: - - Literature: Die Mastervorlesung Big Data Analytics vertieft die Grundkenntnisse, welche die Studierenden im Bachelorstudiengang in den Bereichen “Datenbanken und Informationssysteme” sowie “Data Science” erlangt haben. Die Vorlesung geht eingehend auf die Funktionsweisen und die theoretischen Grundlagen verteilter Informationssysteme sowie der verteilten Datenanalyse ein. Die Vorlesung beginnt mit den statistischen Grundlagen zur verteilten Datenverarbeitung und legt insbesondere einen Fokus auf die Ausführung von verteilten Datenbankoperationen im gesamten Spektrum von “Create, Read, Update, Delete” (CRUD) mittels klassischer SQL und aktueller NoSQL-Architekturen. Synchronisationsverfahren, Recovery sowie Client-Server und Client-Client Architekturen von verteilten Dateisystemen in Apache Hadoop und MapReduce. Hauptspeicherorientierte, verteilte Datenverarbeitung in Apache Spark. Exakte, parallele Ausführung von traditionellen Transaktionsmodellen wie “Atomicity, Consistency, Isolation und Durabiltiy” (ACID) sowie relaxierte Varianten mit eventueller Konsistenz (“CAP Theorem”) Verteilungs- und Partitionierungsstrategien für große Datenmengen (“Sharding”) mit MapReduce Skalierbare Ausführung von analytischen Anfragen im Bereich OLAP und OLTP Verteilte Graphdatenbanksysteme Weitere Anwendungen im Bereich des Maschinellen Lernens und der Visualisierung von großen Datenmengen Zusammenfassend bietet die Vorlesung Big Data Analytics einen detaillierten Einblick in die oben genannten Technologien und zeigt diese in ihrem Zusammenspiel. Im Gegensatz zum Bachelorkurs “Einführung in Data Science” liegt hier der Schwerpunkt in den theoretischen Grundlagen und statistischen Methoden, die der Datenverarbeitung in verteilten Informationssystemen zu Grunde liegen. - Vorlesungsskript Basis for: Der Kurs bietet eine ideale Basis für weitere Projekt- und Masterarbeiten in den Bereichen “Datenbanken und Informationssysteme” sowie “Data Science”, welche von DBIS angeboten werden. Modes of learning and teaching: Lecture Big Data Analytics, 3 SWS (Prof. Martin Theobald) Exercise Big Data Analytics, 1 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt in Form einer schriftlichen Klausur. Bei geringer Teilnahme erfolgt die Modulprüfung ggf. mündlich; dies wird zu Beginn der Veranstaltung bekannt gegeben. Requirements (formal): Keine. Grading: Die Modulnote ergibt aus der Modulprüfung. Bei einer erfolgreichen Teilnahme an den Übungen wird dem Studierenden ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe gewährt. Eine Notenverbesserung von 5,0 auf 4,0 ist nicht möglich (§13 Absatz 4 der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Informatik und Medieninformatik). Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Basierend auf Rev. 1624. Letzte Änderung am 09.10.2015 um 17:05 durch mreichert. 23 3.3 Computergrafik I - Grundlegende Konzepte Token / Number: 88csy72408 English title: Computer Graphics I - Basic Concepts Credits: 6 ECTS Semester hours: 4 Language: Deutsch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Timo Ropinski Training staff: Prof. Dr. Timo Ropinski Integration of module into courses of studies: Computer Science, B.Sc., Main Subject, Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, B.Sc., Main Subject, Computer Science and Media, M.Sc., Core Subject, Mediale Informatik Software-Engineering, B.Sc., Main Subject, Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Keine Learning objectives: Die Studierenden kennen grundlegende Konzepte und Algorithmen aus dem Bereich Computergrafik und können diese in ihren eigenen Grafikanwendungen umsetzen. Dabei sind sie in der Lage, polygonale Modelle unter Anwendung von Texturierung und Beleuchtung zur Anzeige zu bringen. Weiterhin kennen Sie die konzeptionellen Stufen der Renderingpipeline als grundlegende Schritte der Bildsynthese, und könne häufig verwendete Grafikalgorithmen auf der CPU und der GPU umsetzen. Content: Der Kurs behandelt die grundlegenden Konzepte der Computergrafik, wobei ein Schwerpunkt auf Echtzeit-fähiger Grafik liegt, wie sie beispielsweise in Computerspielen zum Einsatz kommt. Im Zentrum steht die Renderingpipeline, als konzeptionelle Grundlage für moderne Bildsynthese Systeme. Die thematisierten Algorithmen werden zunächst in der Vorlesung theoretisch bearbeitet, bevor eine Auswahl in den Übungen praktisch umgesetzt wird. Die praktische Umsetzung erfolgt in C/C++ in Kombination mit dem Grafikstandard OpenGL, wobei am Anfang der Übungen eine Einführung in C/C++ gegeben wird. Im Rahmen des Kurses werden die folgenden Themen behandelt: Ray Tracing Grafikprogrammierung in OpenGL Geometrische Transformationen und Projektionen Beleuchtungsberechnung Clipping Algorithmen Rasterisierung und Texturierung Geometrisches Modellieren ILIAS: – 24 Literature: - P. Shirley, M. Ashikhmin, S. Marschner: Fundamentals of Computer Graphics, AK Peters. - D. Shreiner, G. Sellers, J. Kessenich, B. Licea-Kane: OpenGL Programming Guide: The Official Guide to Learning OpenGL, Addison-Wesley. Basis for: – Modes of learning and teaching: Lecture Computergrafik I, 3 SWS (Prof. Dr. Timo Ropinski) Exercise Computergrafik I, 1 SWS (N.N) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung, welche die Inhalte aus der Vorlesung und den Übungen abdeckt, erfolgt schriftlich. Requirements (formal): Keine Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei einer erfolgreichen Teilnahme an den Übungen wird dem Studierenden ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe gewährt. Eine Notenverbesserung von 5,0 auf 4,0 ist nicht möglich (§13 Absatz 4 der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Informatik und Medieninformatik). Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Basierend auf Rev. 1583. Letzte Änderung am 08.10.2015 um 12:08 durch mreichert. 25 3.4 Data Mining Token / Number: 88csy71994 English title: Data Mining Credits: 6 ECTS Semester hours: 4 Language: Deutsch Turn / Duration: Every Winter Term / 1 Semester Module authority: Dr. Friedhelm Schwenker Training staff: Dr. Friedhelm Schwenker Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Neuroinformatik Computer Science and Media, M.Sc., Specialization Subject, Neuroinformatik Computer Science, M.Sc., Specialization Subject, Mustererkennung Computer Science and Media, M.Sc., Specialization Subject, Mustererkennung Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Specialization Subject Cognitive Systems, M.Sc., Application Subject Data science Requirements (contentual): Grundkenntnisse in Neuroinformatik Learning objectives: Die Studierenden kennen die wesentlichen Methoden und Verfahren des Data Mining. Sie kennen die grundlegenden Methoden der uni-variaten und multivariaten Statistik und sind speziell mit den maschinellen Lernverfahren des Data Mining zur Clusteranalyse, Klassifikation und Regression vertraut und können diese in kleineren Aufgabenstellungen auch anwenden. Content: - Uni- und multivariate statistische Verfahren Clusteranalyseverfahren Visualisierung und Dimensionsreduktion Lernen von Assoziationsregeln Klassifikationverfahren Regrossion und Prognose Statistische Evaluierung Literature: - Mitchell, Tom: Machine Learning, Mc Graw Hill, 1997 - Bishop, Chris: Pattern Recognition and Machine Learning, Springer, 2007 - Hand, David und Mannila, Heikki und Smyth, Padhraic: Principles of Data Mining, MIT Press, 2001 - Witten, Ian H. und Frank, Eibe: Data mining, Morgan Kaufmann, 2000 - Skript zur Vorlesung, 2011 Basis for: – Modes of learning and teaching: Lecture Data Mining, 2 SWS (Dr. Friedhelm Schwenker) Exercise Data Mining, 2 SWS (Dr. Friedhelm Schwenker) 26 Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt schriftlich. Requirements (formal): Bachelor Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei erfolgreicher Teilnahme an den Übungen wird dem Studierenden ein Notenbonus gemäß §13 (5) der fachspezifischen Prüfungsordnung Informatik/Medieninformatik/Software Engineering gewährt. Basierend auf Rev. 1563. Letzte Änderung am 07.08.2015 um 07:58 durch vpollex. 27 3.5 Data Visualization Token / Number: 88csy?????? English title: Data Visualization Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Timo Ropinski Training staff: Prof. Dr. Timo Ropinski Integration of module into courses of studies: Computer Science, B.Sc., Main Subject, Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, B.Sc., Main Subject, Computer Science and Media, M.Sc., Core Subject, Mediale Informatik Software-Engineering, B.Sc., Main Subject, Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Cognitive Systems, M.Sc., Specialization Subject Cognitive Systems, M.Sc., Application Subject Visual Computing Computer Science, Lehramt, Optional Module, Requirements (contentual): Grundlegende Kenntnisse in der Computergrafik werden vorausgesetzt. Learning objectives: Die Studierenden kennen grundlegende Konzepte und Algorithmen aus dem Bereich Visualisierung und können diese anwenden. Sie sind in der Lage, abstrakte und räumliche Daten so zu visualisieren, dass gewünschte Zusammenhänge klar verständlich werden. Des Weiteren können sie ein breites Spektrum an Visualisierungstechniken technisch umsetzen, oder sofern in Anwendungen verfügbar, erfolgreich anwenden. Content: Es werden die Grundlagen aus verschiedenen Bereichen der Visualisierung vermittelt. Dabei werden die bearbeiteten Techniken in den Kontext der Visualisierungs-Pipeline eingeordnet, welche als roter Faden für das Modul gilt. Der Hauptfokus liegt dabei auf interaktiven Visualisierungstechniken, welche es dem Benutzer erlauben mit den Visualisierungen zu interagieren, um beispielsweise die darzustellenden Daten zu filtern oder Darstellungsparameter zu verändern. Es werden die folgenden Themen behandelt: Einordnung der Teilgebiete Die Visualisierungs Pipeline Datenstrukturen für räumliche Daten Visualisierung von Skalar-, Vektor und Tensor-Feldern Visualisierung Multi-Parametrischer Daten Glyph-basierte Techniken Ausgewählte Aspekte der visuellen Wahrnehmung Anwendung moderner Visualisierungs Systeme ILIAS: – 28 Literature: - Es existiert kein Lehrbuch, welches alle behandelten Aspekte abdeckt. Daher wird spezielle Literatur zu den einzelnen Kapiteln in der Vorlesung angegeben. Als übergreifende Werke sind die folgenden Bücher zu nennen: Matt Ward, Georges Grinstein, Daniel Keim: Interactive Data Visualization – Foundations, Techniques, and Applications, CRC Press 2010. Tamara Munzner: Visualization Analysis and Design, AK Peters 2014. Colin Ware: Information Visualization: Perception for Design, Morgan Kaufmann 2012. Alexandru C. Telea: Data Visualization: Principles and Practice, AK Peters 2014. Basis for: – Modes of learning and teaching: Lecture Visualisierung, 3 SWS (Prof. Dr. Timo Ropinski) Exercise Visualisierung, 1 SWS (Robin Skånberg) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung, welche die Inhalte aus der Vorlesung und den Übungen abdeckt, erfolgt schriftlich oder mündlich. Requirements (formal): Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei einer erfolgreichen Teilnahme an den Übungen wird dem Studierenden ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe gewährt. Eine Notenverbesserung von 5,0 auf 4,0 ist nicht möglich (§13 Absatz 4 der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Informatik und Medieninformatik). Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Basierend auf Rev. 1544. Letzte Änderung am 16.06.2015 um 14:01 durch vpollex. 29 3.6 Decision Making and User Experience in Human-Technology-Interaction Token / Number: 88csyneu German title: Entscheidungen und User Experience in der Mensch-Technik-Interaktion Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Sporadic (Summer Term2015) / 1 Semester Module authority: Prof. Dr. Martin Baumann Training staff: Prof. Dr. Jenny Bittner Integration of module into courses of studies: Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Learning objectives: Content: - Psychology for non-Psychologists or Computer Science for Psychologists (1st semester courses) - Cognitive Systems – Concepts, Terminology, Methods The students can distinguish between various basic and advanced theories in the fields of decision making and user experience. The students know how to design and execute empirical studies in this area of Human-Technology-Interaction. They are able to apply basic descriptive and inferential statistical methods. Students demonstrate empirical skills by participating in a research-related project. Theoretical bases of research designs in the fields of decision making and user experience. Practical aspects of the data collection in the laboratory and in applied technological settings. - Decision making - Motivation & Emotion - Communication & Interaction Literature: Will be announced at the beginning of the course Basis for: Cognitive Systems, M.Sc., Specialisation Subjects Psychology Modes of learning and teaching: Lecture Decision Interaction, 2 SWS Exercise Decision Interaction, 2 SWS Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Written report. The exact mode is announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the mark in the exam. A grade bonus according to §13 (5) of the study and exam regulations cognitive systems is given if the exercises are passed successfully. Making and User Experience in Human-Technology(Prof. Dr. Jenny Bittner) Making and User Experience in Human-Technology(Prof. Dr. Jenny Bittner) 30 Basierend auf Rev. 1528. Letzte Änderung am 10.06.2015 um 13:49 durch hneumann. 31 3.7 Dialogue Systems Token / Number: 88csy70423 German title: - Credits: 6 ECTS Semester hours: 4 Language: deutsch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr.-Ing. Dr. Wolfgang Minker Training staff: Prof. Dr.-Ing. Dr. Wolfgang Minker Integration of module into courses of studies: Electrical Engineering, M.Sc., Elective Module, Engineering Sciences Communications Technology, M.Sc., Optional Technical Module, Communications Engineering Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Bachelor. No prerequisites from other lectures required. Some basic knowledge in digital signal processing, computer science, cybernetics and statistics would be helpful. Learning objectives: The student should: - achieve a general theoretical knowldege in the domain of multimodal spoken natural language dialogue technology, - understand the interdisciplinary character of the field, - achieve some practical knowledge through exercises with real systems and their components at different levels of processing. Content: The lecture provides an introduction into the area of multimodal spoken natural language dialogue systems. A particular focus is placed on acoustic processing, speech signal analysis, recognition, spoken natural language understanding, dialogue processing and speech synthesis. The topics will be illustrated throughout practical sessions and demonstrations of applications and products. Local companies working in the field of multimodal spoken natural language dialogue systems will provide guest lectures. Topics: - Human Communication. Speech communication, structure and properties of speech, speech production, and speech perception. - Spoken Natural Language Dialogue Systems Overview. Disciplines of speech processing, history, speech coding, speech synthesis, speech recognition, speech identification/verification, semantic analysis, dialogue modelling. 32 Content (continued): - Speech Synthesis. Relationship between phonetics and written language, speech synthesis steps, phonetic inventory, speech signal production, speech synthesis (concatenation), linear prediction, prosody control. - Acoustic Processing. Beamforming, spectral subtraction, noise reduction, echo compensation, GSM-coding, blind source separation. - Speech Recognition. Overview over the most commonly used techniques in speech recognition, such as feature extraction from speech, statistical modelling of speech, search and speaker adaptation techniques. - Semantic Analysis and Dialogue Modelling. Theory of formal languages, Chomsky hierarchy, word problem, finite automata, parsing, syntactic vs. semantic grammars, rule-based vs. statistical approaches to semantic analysis, dialogue modelling and application control. - Systems Evaluation, Applications and Products. Evaluation of speech recognition and spoken language dialogue systems, overview on research projects, commercially available and research prototypes.Exercises and Practicals. Spoken natural language dialogue systems development with a focus on parsing and VoiceXML based dialogue management. Literature: - copies of slides - J. Allen: Natural Language Understanding , The Benjamin/Cummings Publishing Company, Inc., 1988 - W. Minker, A. Waibel and J. Mariani: Stochastically-based semantic analysis , The Kluwer International Series in Engineering and Computer Science, Kluwer Academic Publishers, Boston, 1999 - L.R. Rabiner and B.H. Juang: An introduction to Hidden Markov Models , IEEE Transactions on Acoustics: Speech and Signal Processing , 3:1, pp. 4-16, 1986 - S.J. Young, P.C. Woodland, and W. Byrne: Spontaneous Speech Recognition for the Credit Card Corpus Using the HTK Toolkit , IEEE Trans. Speech and Audio Processing, Vol 2, No 4, 1994 Basis for: keine Angaben Modes of learning and teaching: Lecture “Dialogue Systems”, 2 SWS () Exercise “Dialogue Systems”, 2 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 60 h Self-Study: 60 h Sum: 180 h Course assessment and exams: Teilnahme an den Vorlesungen und Übungen. In der Regel mündliche Prüfung, ansonsten schriftliche 90 minütige Prüfung. Requirements (formal): Voraussetzung für die Prüfungszulassung ist der Erwerb eines Übungsscheins, welcher die erfolgreiche Teilnahme an den Übungen bestätigt. Grading: an Hand des Prüfungsergebnisses Basierend auf Rev. 1393. Letzte Änderung am 08.01.2015 um 11:05 durch hneumann. 33 3.8 Einführung in die Künstliche Intelligenz Token / Number: 88csy70329 English title: Introduction to Artificial Intelligence Credits: 6 ECTS Semester hours: 4 Language: Deutsch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Susanne Biundo-Stephan Training staff: Prof. Dr. Susanne Biundo-Stephan Integration of module into courses of studies: Computer Science, B.Sc., Main Subject, Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, B.Sc., Main Subject, Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, B.Sc., Main Subject, Software-Engineering Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Grundkenntnisse in praktischer und theoretischer Informatik Learning objectives: Die Studierenden kennen grundlegende Vorgehensweisen und Methoden der künstlichen Intelligenz. Sie sind mit den wichtigsten Problemlösungsverfahren vertraut, können diese implementieren und kennen deren formale Eigenschaften. Sie sind in der Lage zu beurteilen, für welche Problemstellungen welche dieser Verfahren geeignet sind. Die Studierenden kennen die wichtigsten Wissensrepräsentationsformalismen und können informelle Problembeschreibungen entsprechend formalisieren. Darüber hinaus sind sie in der Lage, den Einsatz von Methoden und Verfahren der künstlichen Intelligenz bei der Entwicklung komplexer Anwendungssysteme gezielt zu bewerten, zu planen und durchzuführen. Content: - Intelligente Agenten Problemlösen durch Suche Informierte und Constraint-basierte Suche Spiele als Suchprobleme Aussagen- und Prädikatenlogik Automatisches Beweisen durch Resolution Grundlagen der Wissensrepräsentation und -modellierung Handlungsplanung: lineare und nicht-lineare Verfahren Symbolische Lernverfahren Literature: - S. Russell, P. Norvig: Artificial Intelligence - A Modern Approach, 2. Auflage, Prentice-Hall, 2003 - Deutsche Übersetzung: S. Russell, P. Norvig: Künstliche Intelligenz. Ein moderner Ansatz, 2. Auflage, Pearson Studium, 2004 - Chr. Beierle, G. Kern-Isberner: Methoden wissensbasierter Systeme, 2. Auflage, Vieweg, 2003 - N. J. Nilsson: Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998 34 Basis for: Bachelor- und Masterarbeiten im Bereich Künstliche Intelligenz / Intelligente Systeme Modes of learning and teaching: Lecture Einführung in die Künstliche Intelligenz, 2 SWS (Prof. Dr. Susanne Biundo-Stephan) Exercise Einführung in die Künstliche Intelligenz, 2 SWS (diverse Mitarbeiter) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt schriftlich. Im Rahmen der Übungen wird der Lernfortschritt überprüft. Studierende, die 50% der Übungsaufgaben erfolgreich bearbeitet haben, erhalten in der Modulprüfung einen Notenbonus von 0.3. Requirements (formal): Keine Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei erfolgreicher Teilnahme an den Übungen wird dem Studierenden ein Notenbonus gemäß §13 (5) der fachspezifischen Prüfungsordnung Informatik/Medieninformatik/Software Engineering gewährt. Basierend auf Rev. 1512. Letzte Änderung am 03.06.2015 um 08:23 durch vpollex. 35 3.9 Foundations of Semantic Web Technologies Token / Number: 88csy71806 German title: Semantic Web Grundlagen Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Jun.-Prof. Dr. Birte Glimm Training staff: Jun.-Prof. Dr. Birte Glimm Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Intelligente Systeme Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Specialization Subject, Intelligente Systeme Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Basic knowledge of the World Wide Web as taught in the BSc course Web Engineering; basic knowledge in logics and automated reasoning such as taught in the course Introduction to Artificial Intelligence (Einführung in die Künstliche Intelligenz) or Formal Foundations (Formale Grundlagen) are helpful. Learning objectives: The students can specify data in the Resource Description Format (RDF) and define schema knowledge with RDF Schema. They are able to derive implicit consequences based on the RDF and RDFS rules. The students can use the Web Ontology Language OWL to describe knowledge and to construct simple ontologies with an ontology editor. They can compute entailed consequences by employing algorithms for automated reasoning. The students can name te differences between RDF(S) and OWL and they can evaluate the advantages and disadvantages of the languages. The students can pose queries using the SPARQL query language and explain how the answers to a query are computed. They know the OWL RL profile and can explain how a derivation is made with the OWL RL rules. Given an application scenario, the students are able to choose a suitable language and they can predict the consequences of their design decisions. Content: - RDF (Resource Description Framework) and RDF Schema for creating meta data and simple ontologies - The Web Ontology Language (OWL) and its extension OWL 2 - Automated reasoning for deriving entailed consequences of an ontology - The SPARQL query language for RDF - The OWL RL profile and its rules - Aspects of ontology engineering - Practical application in the Semantic Web 36 Literature: - Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph. Foundations of Semantic Web Technologies. CRC Press 2009 - Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, York Sure. Semantic Web - Grundlagen. Springer 2008 - Steffen Staab, Rudi Studer (Editors). Handbook on Ontologies. Springer 2003 - Tim Berners-Lee. Weaving the Web. Harper 1999 geb./2000 Taschenbuch - Siegfried Handschuh, Steffen Staab. Annotation for the Semantic Web. 2003 Basis for: Master’s thesis in the area of intelligent systems and automated reasoning in the Semantic Web. Modes of learning and teaching: Lecture Foundations of Semantic Web Technologies, 3 SWS (Jun.-Prof. Dr. Birte Glimm) Exercise Foundations of Semantic Web Technologies, 1 SWS (Markus Brenner) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations Informatik/Medieninformatik/Software Engineering/Cognitive Systems is given if the exercise class is passed successfully. Basierend auf Rev. 1505. Letzte Änderung am 26.05.2015 um 09:52 durch bglimm. 37 3.10 Hands On: Mobile Assessment of Biosignals - Principles and Application Token / Number: 88csyneu German title: Hands On: Physiologische Datenerhebung im Feld - Grundlagen und erste Schritte Credits: 4 ECTS Semester hours: 2 Language: English Turn / Duration: Sporadic (Summer Term) / 1 Semester Module authority: Prof. Dr. Martin Baumann Training staff: Priv.-Doz. Dr. Cornelia Herbert Integration of module into courses of studies: Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): None Learning objectives: The participants shall acquire theoretical as well as practical knowledge about the recording of biosignals (EEG) in real-time and their mobile and wireless measurement. Content: This course is an introductory course on the mobile assessment of biosignals. Special focus will be given to wireless recording of EEG data and its applications (e.g. in sports, neurorehabilitation, human machine interaction). The course consists of four major teaching units. It starts with a brief introduction into the basic principles of electroencephalography (EEG). Next, training in wireless EEG recording will be provided (second block). In the third block, data will be recorded in a real life situation and analyzed together in the fourth block. Literature: Will be announced at the beginning of the course Basis for: Modes of learning and teaching: Project “Project - Hands on- Mobile Assessment of Biosignals - Principles and Application” (PD Dr. Cornelia Herbert) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the mark in the exam. A grade bonus according to §13 (5) of the study and exam regulations cognitive systems is given if the exercises are passed successfully. Basierend auf Rev. 1587. Letzte Änderung am 08.10.2015 um 12:44 durch mreichert. 38 3.11 Information Processing in Neural Systems Token / Number: 88csyneu German title: Informationsverarbeitung im Nervensystem Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Günther Palm Training staff: Prof. Dr. Günther Palm Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Specialization Subject Computer Science, M.Sc., Core Subject, Theoretische und Mathematische Methoden der Informatik Computer Science and Media, M.Sc., Core Subject, Theoretische und Mathematische Methoden der Informatik Computer Science, M.Sc., Specialization Subject, Neuroinformatik Computer Science and Media, M.Sc., Specialization Subject, Neuroinformatik Computer Science and Media, M.Sc., Application Subject, Simulation neuronaler Netze Requirements (contentual): Basic knowledge in mathematics, computer science, and neuroscience Learning objectives: The students understand the biological examples of information processing. They are able to develop models of neurobiological information processing for similar systems. They are able to develop models based on elementary systems theory. Content: - Information processing in neurobiological systems - In particular the human visual system: information processing in the retina, the geniculate, and the visual cortices, visual perception and psychophysics - Similar topics can be considered for the auditory system - Synaptic plasticity and adaptivity - Methods from systems theory 39 Literature: - P.S. Churchland, T.J. Sejnowski: The Computational Brain. MIT Press, 1999 - P. Dayan, L.F. Abbott: Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA, 2005 - M.S. Gazzaniga (ed.): The Cognitive Neuroscience. MIT Press, 1995 - W. Gerstner, W.M. Kistler: Spiking Neuron Models, Single Neurons, Populations, Plasticity, Cambridge University Press, 2002 - E.M. Izhikevich: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, 2005 - E.R. Kandel, J.H.Schwartz, Th.M. Jessel (eds.): Principles of Neural Science, 3.Ed. Elsevier, 1991 - P. Peretto: An Introduction to the Modeling of Neural Networks. Cambridge University Press, 1992 - R. Unbehauen: Systemtheorie 1. Oldenburg, 2002 - Ch. von Campenhausen: Die Sinne des Menschen, 2. Aufl. Georg Thieme, 1993 - H.R. Wilson: Spikes, Decisions and Actions. Oxford Univ. Press, 1999/2005 Basis for: None Modes of learning and teaching: Lecture Information Processing in Neural Systems, 3 SWS (Prof. Dr. Günther Palm) Exercise Information Processing in Neural Systems, 1 SWS (Prof. Dr. Günther Palm) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. Requirements (formal): none Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1509. Letzte Änderung am 28.05.2015 um 15:20 durch vpollex. 40 3.12 Information Retrieval and Web Mining Token / Number: 88csyneu English title: Information Retrieval and Web Mining Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Martin Theobald Training staff: Prof. Dr. Martin Theobald Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Informationssysteme Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Specialization Subject, Informationssysteme Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Specialization Subject, Informationssysteme Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Application Subject Data science Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Grundlagenwissen zu Stochastik, wie in der Vorlesung Angewandte Stochastik I vermittelt, ist von Vorteil, aber nicht zwingend erforderlich. Grundkenntnisse zu Datenbanken und Informationssystemen sind von Vorteil. Learning objectives: Der Kurs bietet den Studierenden folgende Lernziele: - Die Studierenden erkennen, wie moderne Suchmaschinen funktionieren. - Die Studierenden analysieren, welche Algorithmen der Ähnlichkeitssuche und Ranglistengenerierung unterliegen. - Die Studierenden analysieren, wie diese Algorithmen für die Interessen individueller Benutzer personalisiert werden können. - Die Studierenden erkennen, wie diese Algorithmen skalierbar auf verteilte Rechnerarchitekturen abgebildet werden könnnen. - Des Weiteren erkennen die Studierenden, wie große Webdatensammlungen zur Klassifikation und Ähnlichkeitssuche von Dokumenten effizient analysiert werden können. 41 Content: - Information-Retrieval ist eine Disziplin, die zentrale Aspekte der Dokumentenverarbeitung, der automatischen Ranglistengenerierung sowie der skalierbaren Datenanalyse miteinander verbindet. Ein Kernthema im Information-Retrieval ist die effektive und effiziente und Bearbeitung von Stichwortanfragen. Dabei sind moderne Verfahren im Information-Retrieval weder auf reine Stichwortanfragen noch auf Textdokumente beschränkt, sondern können zunehmend flexibel mit den verschiedensten Datenformaten sowie mit natürlichsprachlichen Benutzeranfragen umgehen. Der Bereich Web-Mining fokusiert auf eine Art der Informationsverarbeitung, die unabhängig von spezifischen Benutzeranfragen nach charakteristischen Mustern in großen Sammlungen von Webdokumenten sucht. Bekannte Beispiele hierfür sind wohl Google’s PageRank Algorithmus oder Produktempfehlungen bei Amazon. Aktuelle Ansätze im Information-Retrieval und Web-Mining verfolgen dabei zunehmend Techniken, die aus dem maschinellen Lernen bzw. der automatischen Sprachverarbeitung stammen, um gezielt strukturierte Informationen aus Textinhalten zu extrahieren und in Form von semantischen Wissensrepräsentationen zu speichern. Wissensbasierte Systeme, wie beispielsweise Google’s Knowledge Graph, greifen dabei auf reichhaltige Wissensbasen zurück, die aus Milliarden von Webdokumenten automatisch extrahiert wurden. Zusammenfassend gliedert sich er Inhalt der Vorlesung in folgende Punkte: Grundlagen aus der Wahrscheinlichkeitstheorie und statistischen Modellierung. Boolesche Auswertung von Suchanfragen und Vektorraummodell. Probabilistische Auswertungsverfahren zur Ranglistengenerierung (ProbabilisticIR, Okapi BM25). Personalisierte Suche mit Relevanzfeedback (Robertson/Sparck-Jones, Rocchio). Evaluation von Suchmaschinen (Precision/Recall, MAP, NDCG, etc.). Indexierung und effiziente Anfrageauswertung (Quit&Continue, verschiedene Top-k Algorithmen). Linkanalyse (PageRank, HITS, TrustRank, SpamRank). Clustering und automatische Klassifikation von Objekten (k-NN, k-Means, Naive Bayes, SVMs). Informationsextraktion mit Hilfe maschineller Lernverfahren sowie Grundlegende Techniken zur Verarbeitung natürlicher Sprache (POS-Tagging, Named-EntityDetection, Dependenzparsing). Literature: - Vorlesungsskript - Introduction to Information Retrieval. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze. Cambridge University Press, 2008. http://nlp.stanford.edu/IR-book/ - Modern Information Retrieval, 2nd Ed. Ricardo Baeza-Yates, Berthier RibeiroNeto. Addison Wesley, 2011. http://www.mir2ed.org/ - Mining of Massive Datasets. Jure Leskovec, Anand Rajaraman, Jeff Ullman. Cambridge University Press, 2011. http://www.mmds.org/ Basis for: Weitere Vorlesungen im Kontext "‘Data Science"’. Masterarbeiten zum Thema Information Retrieval & Web Mining. Modes of learning and teaching: Lecture Information Retrieval & Web Mining, 3 SWS ( Prof. Dr. Martin Theobald) Exercise Information Retrieval & Web Mining, 1 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h 42 Course assessment and exams: Die Modulprüfung erfolgt in Form einer schriftlichen Klausur. Bei geringer Teilnahme erfolgt die Modulprüfung ggf. mündlich; dies wird zu Beginn der Veranstaltung bekannt gegeben. Requirements (formal): Keine. Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei einer erfolgreichen Teilnahme an den Übungen wird dem Studierenden ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe gewährt. Eine Notenverbesserung von 5,0 auf 4,0 ist nicht möglich (§13 Absatz 4 der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Informatik und Medieninformatik). Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Basierend auf Rev. 1586. Letzte Änderung am 08.10.2015 um 12:26 durch mreichert. 43 3.13 Intelligente Handlungsplanung Token / Number: 88csy72012 English title: Automated Planning Credits: 6 ECTS Semester hours: 4 Language: Deutsch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Susanne Biundo-Stephan Training staff: Prof. Dr. Susanne Biundo-Stephan Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Intelligente Systeme Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Specialization Subject, Intelligente Systeme Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Grundkenntnisse in praktischer und theoretischer Informatik; Grundkenntnisse im Fach Künstliche Intelligenz sind von Vorteil Learning objectives: Die Studierenden kennen die Grundprinzipien der intelligenten Handlungsplanung. Dazu gehören die Darstellung von Planungsproblemen in verschiedenen Formalismen und der Aufbau von Domänenmodellen. Die Studierenden kennen die wichtigsten Planungsverfahren einschließlich ihrer formalen Eigenschaften und sind in der Lage entsprechende Planungssysteme zu entwerfen und zu implementieren. Sie sind mit den gängigsten Modellierungsansätzen vertraut, können Modelle für Planungsdomänen entwickeln und deren Adäquatheit beurteilen. Sie kennen charakteristische Anwendungsfelder und können einschätzen, welche Planungsverfahren für welche Problemstellungen geeignet sind. Content: - Literature: - M. Ghallab, D. Nau, P. Traverso: Automated Planning: Theory and Practice, Morgan Kaufmann, 2004 - Q. Yang: Intelligent Planning - A Decomposition and Abstraction Based Approach, Springer, 1997 - M. Zweben, M.S. Fox: Intelligent Scheduling, Morgan Kaufmann, 1994 Basis for: Repräsentationsformalismen für Planung Nichtlineare Planungsverfahren Planungsgraphen Planen durch heuristische Suche Hierarchisches Planen Hybrides Planen Deduktives Planen Intelligentes Scheduling; CSP-basierte Methoden Planungsanwendungen – 44 Modes of learning and teaching: Lecture Intelligente Handlungsplanung, 2 SWS (Prof. Dr. Susanne BiundoStephan) Exercise Intelligente Handlungsplanung, 2 SWS (Bastian Seegebarth, M.Sc.) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt je nach Teilnehmerzahl mündlich oder schriftlich. Im Rahmen der Übungen wird der Lernfortschritt überprüft. Studierende, die 50% der Übungsaufgaben erfolgreich bearbeitet haben, erhalten in der Modulprüfung einen Notenbonus Requirements (formal): Keine Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei erfolgreicher Teilnahme an den Übungen wird dem Studierenden ein Notenbonus gemäß §13 (5) der fachspezifischen Prüfungsordnung Informatik/Medieninformatik/Software Engineering gewährt. Basierend auf Rev. 1582. Letzte Änderung am 08.10.2015 um 12:01 durch mreichert. 45 3.14 Introduction to Data Science Token / Number: 88csyneu English title: Introduction to Data Science Credits: 6 ECTS Semester hours: 4 Language: English Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Martin Theobald Training staff: Prof. Dr. Martin Theobald Integration of module into courses of studies: Computer Science, B.Sc., Main Subject, Computer Science and Media, B.Sc., Main Subject, Software-Engineering, B.Sc., Main Subject, Software-Engineering Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Core Subject, Software Engineering Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Application Subject Data science Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Keine. Learning objectives: Die Studierenden erkennen, wie die verteilte Datenverarbeitung mit aktuellen Technologien im Bereich der KeyValue-Stores und NoSQL-Datenbanken funktioniert. Die Studenten analysieren, wie eine komplexe Anwendung mittels dieser Systeme realisiert werden kann und implementieren auch aktiv eine solche Anwendung im Verlauf des Kurses. Desweiteren vermittelt der Kurs einen Überblick über die allgemeine Funktionsweise und die theoretischen Grundlagen der verteilten Datenverarbeitung. 46 Content: Literature: Der Begriff “Data Science” ist zu einem wichtigen Schlagwort im Umgang mit großen Datenmengen geworden. DBIS reagiert auf diese aktuelle Entwicklung mit einer neuen Vorlesung Einführung in Data Science, in welcher den Studierenden bereits im Bachelorstudium die Grundkonzepte der skalierbaren Verarbeitung von großen Datenmengen in verteilten Rechnerarchitekturen vermittelt werden. Die Vorlesung gibt Einblicke in die Funktionsweise verteilter Dateisysteme, wie beispielsweise das verteilte Hadoop-Dateisystem (HDFS), und vermittelt den Studierenden einen ersten, praxisorientierten Umgang im Programmieren von verteilten Anwendungen in MapReduce. Des Weiteren ermöglicht der Kurs einen Einblick in aktuelle Programmierschnittstellen (API’s) und Datenmodelle im sogenannten “Apache-Hadoop Ecosystem”. Dabei sammeln die Studenten ebenfalls praktische Erfahrung mit weiteren Werkzeugen im Bereich der sogenannten KeyValue-Stores und aktuellen NoSQL-Datenbanken wie Apache HBase, Apache HIVE, Apache SPARK und MongoDB. Vertiefende Themen zu den theoretischen Grundlagen der verteilten Datenverarbeitung, zur Modellierung von klassischen Datenbankkonzepten mittels dieser neuen Technologien und zur Verarbeitung verschiedener Dokumentformate wie beispielsweise Textund XML-Daten, aber auch neuer Datenformate wie JSON runden den Kurs ab. Die Vorlesung Einführung in Data Science gibt einen ersten Einblick die oben genannten Technologien und zeigt diese auch im Zusammenspiel. Der Schwerpunkt liegt in der praxisorientierten Anwendung der zu Grunde liegenden Architekturen, in welcer die Studierenden anhand von wöchentlichen, aufeinander aufbauenden Programmierübungen ein komplexes Projekt in Hadoop zu implementieren erlernen. Dabei wird auch auf die theoretischen Grundlagen dieser Technologien eingegangen sowie ein Einblick in die internen Aspekte dieser Systeme gewährt. - Vorlesungsskript Basis for: Der Kurs bietet eine ideale Basis für weitere Projekte und Vertiefungsthemen im Bereich “Data Science”, welche von DBIS angeboten werden. Modes of learning and teaching: Lecture Einführung in Data Science, 2 SWS (Prof. Martin Theobald) Laboratory Einführung in Data Science, 2 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt in Form einer schriftlichen Klausur. Bei geringer Teilnahme erfolgt die Modulprüfung ggf. mündlich; dies wird zu Beginn der Veranstaltung bekannt gegeben. Als Leistungsnachweise für das Labor sind eine praktische Problemlösung, schriftliche Kurzberichte sowie eine Ergebnispräsentation zu erbringen. Requirements (formal): Keine. Grading: Die Modulnote ergibt sich zu 50% aus der Modulprüfung und zu 50% aus dem Labor. Basierend auf Rev. 1585. Letzte Änderung am 08.10.2015 um 12:20 durch mreichert. 47 3.15 Mobile and Ubiquitous Computing Token / Number: 88csy71599 English title: Mobile and Ubiquitous Computing Credits: 6 ECTS Semester hours: 4 Language: English Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr.-Ing. Michael Weber Training staff: Prof. Dr.-Ing. Michael Weber Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Medieninformatik Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Specialization Subject, Verteilte und eingebettete Systeme Software-Engineering, M.Sc., Specialization Subject, Mensch-Maschine Interaktion Computer Science and Media, M.Sc., Core Subject, Mediale Informatik Computer Science and Media, M.Sc., Specialization Subject, Medieninformatik Computer Science, Lehramt, Optional Module, Communications and Computer Engineering, M.Sc., Elective Module, (Inf) Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): none Learning objectives: Students know the characteristics, methods, algorithms and technologies of mobile and ubiquitous systems. They are enabled to apply and transfer this knowledge to new ubiquitous and context-aware applications and application scenarios. They have the ability to plan, design and implement ubiquitous systems and applications. Content: - Literature: - Schiller: Mobile Communications, 2nd Ed. Addison-Wesley, 2003 - Mischa Schwartz: Mobile Wireless Communications. Cambridge University Press., 2004 - John Krumm: Ubiquitous Computing Fundamentals. CRC Press, 2009 - Stefan Poslad: Ubiquitous Computing: Smart Devices, Environments and Interactions. Wiley, 2009 Basis for: Introduction to ubiquitous computing Mobile devices Mobile communication Sensors and context Ubiquitous user interfaces System support and middleware for ubiquitous computing Security and privacy in ubiquitous computing – 48 Modes of learning and teaching: Lecture Mobile and Ubiquitous Computing, 3 SWS (Prof. Dr.-Ing. Michael Weber) Exercise Mobile and Ubiquitous Computing, 2 SWS (N.N.) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Oral or written exam depending on number of participants. Requirements (formal): none Grading: Exam. Successful participation at the assignments earns a bonus. Basierend auf Rev. 1542. Letzte Änderung am 16.06.2015 um 12:24 durch mreichert. 49 3.16 Self Regulation: Development, Neuro-Cognition and Psychopathology Token / Number: 88csyneu German title: Selbstregulation: Entwicklung, Neuro-Kognition und Psychopathologie Credits: 4 ECTS Semester hours: 2 Language: German Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Martin Baumann Training staff: Prof. Dr. Markus Kiefer Integration of module into courses of studies: Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): - Psychology for non-Psychologists or Computer Science for Psychologists (1st semester courses) - Cognitive Systems – Concepts, Terminology, Methods Learning objectives: Students acquire basis theoretical concepts, experimental methods and practical applications of research in human self regulation. They learn to understand and to discuss scientific articles in a group. Students also learn to present a scientific topic within a term paper. Content: In this seminar, students acquire essential knowledge of theories, methods, topics and empirical findings about the psychology and cognitive neuroscience of self regulation. They learn to define and to distinguish important functions of self regulation such as executive control and emotion regulation. Furthermore, they gain insight in the development of self regulation across life span and in deficits of self regulation in psychiatric disorders. Students learn the interdisciplinary facets of self regulation covering several psychological disciplines (general psychology, biological psychology, cognitive neuroscience, differential psychology, clinical psychology and social psychology) and neighboring disciplines such as biology and economics. Literature: Goschke, T. (2008). Volition und kognitive Kontrolle. In J. Müsseler (Ed.), Lehrbuch der Allgemeinen Psychologie (pp. 230-393). Heidelberg: Spektrum, Akademischer Verlag. Karoly, P. (1993). Mechanisms of Self-Regulation - a Systems View. Annual Review of Psychology, 44, 23-52. Rothbart, M. K., Sheese, B. E., Rueda, M. R., & Posner, M. I. (2011). Developing Mechanisms of Self-Regulation in Early Life. Emotion Review, 3, 207-213. Modes of learning and teaching: Seminar Self Regulation: Development, Neuro-Cognition and Psychopathology (Prof. Dr. Markus Kiefer) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: Students have to write a term paper of about 10 pages. Requirements (formal): None Grading: The mark for the module is determined by the mark in the exam. 50 Basierend auf Rev. 1587. Letzte Änderung am 08.10.2015 um 12:44 durch mreichert. 51 3.17 Specialization in Cognitive Psychology Token / Number: 88csyneu German title: Grundlagenvertiefung Kognition Credits: 4 ECTS Semester hours: 2 Language: English/German Turn / Duration: Every Semester / 1 Semester Module authority: Prof. Dr. Anke Huckauf Training staff: Dozenten aus dem Institut für Psychologie und Pädagogik Integration of module into courses of studies: Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): None Learning objectives: The students learn about selected findings and theoretical approaches in cognitive psychology and their implications for practical as well for theoretical issues. The students can describe the elementary concepts and methods of contents and methods in current research on general experimental psychology. They know about the history of respective approaches and various application fields. Students can relate respective contemporary research questions to basic theoretical questions as well as to methodological issues. Content: - Selected topics in cognitive psychology are presented; the history of a certain subject; elementary concepts, principles and methods of respective subject; comparing various approaches subject to investigations; Principles of applying respective know-how and methodology Literature: - Presented in the respective courses Basis for: This module provides the basis for all psychological modules. It also helps for any of the interdisciplinary topics that are scheduled later in the curriculum. Modes of learning and teaching: Project Regulatory mechanisms in perception, 2 SWS (Prof. Dr. Anke Huckauf) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The exam is oral or written depending on the number of participants. The exact mode is announced in the lecture. Requirements (formal): Bachelor in Computer Science or related disciplines Grading: The mark for the module is determined by the mark in the exam. Basierend auf Rev. 1545. Letzte Änderung am 16.06.2015 um 14:25 durch vpollex. 52 3.18 Usability Engineering Token / Number: 88csy72028 English title: Usability Engineering Credits: 6 ECTS Semester hours: 4 Language: Deutsch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr.-Ing. Michael Weber Training staff: Michael Offergeld Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Mensch-Maschine Dialogsysteme Software-Engineering, M.Sc., Core Subject, Software Engineering Software-Engineering, M.Sc., Specialization Subject, Mensch-Maschine Interaktion Computer Science, M.Sc., Specialization Subject, Software-Engineering und Compilerbau Computer Science and Media, B.Sc., Main Subject, Computer Science and Media, M.Sc., Core Subject, Mediale Informatik Communications and Computer Engineering, M.Sc., Elective Module, (Inf) Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Keine Learning objectives: Die Teilnehmer verfügen über Grundkenntnisse der Mensch-MaschineInteraktion (MMI) sowie zugehörige Grundmodelle. Dazu zählen die Kenntnis von Gestaltungsobjekten einer Mensch-Maschine-Schnittstelle, softwareergonomischen Gütekriterien zur Bewertung und Gestaltung von Benutzerfreundlichkeit sowie von Vorgehensweisen zur Entwicklung ergonomischer Systeme. Sie beherrschen die ganzheitliche und durchgängige ergonomische Unterstützung von Entwicklungsprojekten durch Methoden des Usability Engineering über alle gängigen Phasen einer Systementwicklung hinweg. Sie können diese Methoden anwenden und praktisch umsetzen und insbesondere Benutzungsschnittstellen nach den Gütekriterien der Benutzerfreundlichkeit bewerten. 53 Content: Literature: Die Veranstaltung Usability Engineering gibt eine Einführung in die Grundlagen und Grundmodelle der Mensch-Maschine-Interaktion (MMI). Zunächst werden die zentralen Fragen ”Welche Teilschnittstellen kann man an einer MMI gestalten/bewerten?”, ”Nach welchen Kriterien kann man eine MMI gestalten/bewerten?” und ”Wie geht man bei der Entwicklung ergonomischer Systeme sinnvollerweise vor?” erörtert und beantwortet. Im Anschluss daran vermittelt die Vorlesung tiefere Einblicke in Konzepte, Methoden und Werkzeuge einer ganzheitlichen, durchgängigen und ingenieursmäßigen ergonomischen Unterstützung von Systementwicklungsprojekten nach Prinzipen des Usability Engineering. Dabei werden detaillierte Methoden und Ansätze bezogen auf die Systementwicklungsphasen Projektvorbereitung, Anforderungsanalyse, UserInterface-Entwurf, Integration und Test, Überleitung in die Nutzung sowie Nutzung und Pflege von interaktiven IT-Systemen vorgesellt. Die vermittelten Grundlagen werden durch zahlreiche Beispiele aus der industriellen Praxis erläutert und vertieft. Die Inhalte stützen sich auf ein Vorgehen gemäß Usability Engineering, welches in der wissenschaftlichen Welt etabliert und in der Praxis erprobt ist. - Mayhew, D.J.: The Usability Engineering Lifecycle, A Practitioner’s Handbook for User Interface Design, San Francisco, California, 1999: Morgan Kaufmann Publishers, Inc. - Nielsen, Jakob: Usability Engineering, Boston, San Diego, New York, 1993: AP Professional (Academic Press) - Oppermann, R.; et. al.: Softwareergonomische Evaluation, Der Leitfaden EVADIS II, 2. Auflage, deGruyter-Verlag, 1992 - Shneiderman, B.: Designing the User Interface - Strategies for Effective HumanComputer Interaction, Addison-Wesley, 2010 - DATech Deutsche Akkreditierungsstelle Technik in der TGA GmbH: Leitfaden Usability; http://www.datech.de unter Verfahren & Unterlagen / Prüflaboratorien Basis for: – Modes of learning and teaching: Lecture Usability Engineering, 2 SWS (Michael Offergeld) Exercise Usability Engineering, 2 SWS (Michael Offergeld) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt schriftlich. Requirements (formal): Keine Grading: Die Modulnote ergibt sich aus der Modulprüfung. Basierend auf Rev. 1213. Letzte Änderung am 03.02.2014 um 11:05 durch fslomka. 54 3.19 Vision in Man and Machine Token / Number: 88csy71865 English title: Vision in Man and Machine Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Sporadic (Summer Term) / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Computer Vision Computer Science and Media, M.Sc., Specialization Subject, Computer Vision Computer Science and Media, M.Sc., Specialization Subject, Computer Vision Communications and Computer Engineering, M.Sc., Elective Module, Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): None, prior knowledge acquired from "Computer Vision I" (or similar lecture) is beneficial Learning objectives: The students acquire knowledge about models and mechanisms of visual information processing in biological and technical systems (professional competence). They become acquainted with formal and algorithmic concepts for the description of processing principles and their coupling with visual information processing in cognitive systems (methodological expertise). They are able to make use of biological principles and transfer them for computational approaches in technical applications (transfer and evaluation competence). Content: - Literature: The following literature list defines a reference. Further hints to specific literature are given at the beginning of the course program: - E.T. Rolls, G. Deco: Computational Neuroscience of Vision, Oxford Univ. Press, 2002 - C. Curio, H.H. Bülthoff, M.A. Giese (Eds.): Dynamic Faces. MIT Press, 2011 - R. Szeliski: Computer Vision. Springer, 2011 Specific journal and conference papers for detailed discussion of the major topics will be distributed during the course. Basis for: Introduction Feature extraction and visual cortex Feature grouping and shape detection Motion detection and integration Depth from stereo Object recognition Neural processing of faces Attention Spatial navigation Analysis of biological and articulated motion – 55 Modes of learning and teaching: Lecture Vision in Man and Machine, 2 SWS) (Prof. Heiko Neumann) Exercise Vision in Man and Machine, 2 SWS) (Tobias Brosch) The exercises split into two parts, each of which contributes 50%. One part is organized as regular exercises as a means for implementation and practical testing of the techniques and methods discussed in the lecture. The other part is organized a journal club where selected papers that cover the topics of the lecture are discussed in the class. The specific organization will be announced at the beginning of the course. Estimation of effort: Active Time: (lecture) 45 h Preparation and Evaluation: 135 h Sum: 180 h Course assessment and exams: The exams are oral or written depending on the number of participants and cover the contents of lecture and exercises. The exact modes are announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations in cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1492. Letzte Änderung am 22.04.2015 um 13:21 durch vpollex. 56 4 Applied Subjects 4.1 Cognitive Vision 4.1.1 Project Cognitive Vision - Algorithms and Applications Token / Number: 88csy????? English title: Project Cognitive Vision - Algorithms and Applications Credits: 16 ECTS Semester hours: 8 Language: Englisch Turn / Duration: Every Summer Term / 2 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive Vision Requirements (contentual): Basic knowledge in visual information processing (image processing, vision, or related) are a prerequisite. It is advantageous if participants have successfully passed "Vision in Man and Machine" or a related course. Learning objectives: Students are able to structure and plan a practically oriented topic in the field of Cognitive Vision. They are familiar with the underlying theory and practical aspects of computational vision as well as utilities for the analysis and implementation of algorithms in this field. The students can document their results, evaluate them and finally present those in talks to a greater audience. Students work in a team of two or more participants. In general, the selected topics focus on specific research or application problems. Through independent development of concepts to solve the given problem students gain in-depth insights in the area of computational vision, from the analysis, to realization and evaluation. Further, they develop competencies to work in teams, develop goal-oriented plans, and work jointly at a generic work topic. 57 Content: The project is organized for two consecutive semesters to develop in-depth knowledge to realize algorithmic solutions in the field of cognitive computational vision given an extended problem definition. The problem is outlined at the beginning of the project in the first semester. Topics can vary but are selected at the beginning of the semester. During the first phase the range of the contents that should be covered in the project will be discussed in detail and the relevant methods will be identified. This is accompanied by a literature search, reading, and discussion phase. In this phase relevant mathematical and computational methods will be selected and discussed as well. A preliminary summary will be generated in written form (short report) and presented orally in a structured format to a greater audience. Comments and criticisms will be analyzed and considered to arrive at a revised proposal for the practical project development. Draft implementations may be developed to supplement this specification phase. A final report at the end of the first semester fulfills a milestone which builds the basis for the second semester with the implementation and evaluation phase. In the second semester, the team starts to define the distribution of work for the different team members and subgroups. The several parts of the system will now be implemented. Regular team meetings ensure that the final system’s integration is kept in the project focus. In a second milestone teams report about the results achieved in this phase and present this to a greater audience. In the final phase the teams merge to integrate their components and conduct evaluations. If the project contains competitive parts in which multiple solutions to the same problem topic will be developed, their comparative and competitive evaluation is conducted during this phase. The final project report defines the third milestone. The results are presented in a final project presentation to a greater audience. Literature: A list of basic material will be distributed at the beginning of the first project phase. Basis for: – Modes of learning and teaching: Project Cognitive Vision - Algorithms and Applications (Prof. Dr. Heiko Neumann) Estimation of effort: Active Time: 80 h Preparation and Evaluation: 280 h Sum: 360 h Course assessment and exams: The timely completion of all the milestones (including the final project report), the oral presentations as well as an active participation in the meetings are mandatory for successful completion of the project. Requirements (formal): none Grading: The mark for the module is determined by the average of the mark given for the final project report (third milestone) and the final oral project presentation. The active contribution of each individual to reach the first and second milestones as well as the short report (in the first semester) are mandatory prerequisites. Basierend auf Rev. 1589. Letzte Änderung am 08.10.2015 um 12:57 durch mreichert. 58 4.1.2 Project Computational Vision and Image Processing Token / Number: 88csy71980 English title: Project Computational Vision and Image Processing Credits: 8 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Semester / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive Vision Requirements (contentual): Basic knowledge in visual information processing (image processing, vision, or related) are a prerequisite. It is advantageous if participants have successfully passed "Vision in Man and Machine" or a related course. Learning objectives: Students are able to structure and plan a practically oriented topic in the field of Cognitive Vision. They are familiar with the underlying theory and practical aspects of various aspects of computational vision as well as utilities for the analysis and implementation of algorithms in this field. The students can document their results, evaluate them and finally present those in talks to a greater audience. Students work in a team of two or more participants. In general, the selected topics focus on specific research or application problem. Through independent development of concepts to solve the given problem they acquire in-depth competencies to work in the area of computational vision, from the analysis, to realization and evaluation. They develop further competencies to work in teams, develop goal-oriented plans, and work jointly at a generic work topic. Content: In-depth knowledge is developed to realize algorithmic solutions in the field of cognitive computational vision and system level solutions for visual information processing for a given problem definition. Different topics will be considered from domains such as, for example, computational vision of single images, motion sequences (video) or stereo, image processing in biologically inspired neural architecture, and learning in vision. The project starts with a reading phase where selected literature is analyzed and relevant algorithms are identified. These algorithms are implemented and evaluated using proper test data. In cases of methodological comparisons the different outcomes are compared in a competitive fashion. The results are presented in a final project presentation to a greater audience and the project together with its results is described in a project report. Literature: A list of basic material will be distributed at the beginning of the first project phase. Basis for: – Modes of learning and teaching: Project Project Computational Vision and Image Processing (Prof. Dr. Heiko Neumann) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 210 h Sum: 240 h 59 Course assessment and exams: Vortrag zur Aufgabenstellung und Implementierung sowie eine schriftliche Ausarbeitung The final oral presentations as well as the final project report are required. The report includes a documentation of the evaluation results and proper statistical testing. Requirements (formal): Bachelor Grading: The mark for the module is determined by the average of the mark given for the final written project report and the final oral project presentation. Basierend auf Rev. 1492. Letzte Änderung am 22.04.2015 um 13:21 durch vpollex. 60 4.1.3 Project and Seminar Visual Information Processing Token / Number: 88csyneu English title: Project and Seminar Visual Information Processing Credits: 8 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Semester / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive Vision Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): Assumes basic knowledge regarding methods and principles in digital image processing or computational vision. Learning objectives: The students are capable to deal with scientific technical literature and apply scientific methodology for their studies. Students can search and analyze specific literature to present the core contents in a seminar presentation. These investigations serve as the basis for subsequent design and implementation of the computational mechanisms as described in the source references. They will finally test and present the key results of their model implementations. Content: A specific topic from the area of cognitive systems is selected and relevant core literature based on original scientific papers will be discussed. Students will present the contents and core themes in a seminar talk. Based on this presentation and literature study the content of such literature study will be specified, implemented and tested. A demonstration together with a final presentation completes the project part. A written report is finally delivered. Literature: The literature that is suited for the seminar and project will be selected in regard to the the selected topic. Basis for: Lectures from the core topic and specialization areas in Cognitive Systems should be attended to utilize a sound background for application and interdisciplinary work. Modes of learning and teaching: Project Seminar (2 SWS) (Prof. Heiko Neumann) This module combines seminar and project parts. The introductory part with literature study and preparation of scientific presentation defines the seminar. The subsequent specification of the algorithms, implementation and evaluation defines the project part. The details concerning the contents and the specific time table are presented to the attendees at the beginning of the semester. Estimation of effort: Active Time: 30 h Preparation and Evaluation: 210 h Sum: 240 h Course assessment and exams: The final mark will be determined through the initial seminar presentation, the final project presentation, and the project report. A minimum achievement for all three parts is mandatory. Requirements (formal): None 61 Grading: The mark for the module is determined by the average mark obtained for the seminar presentation, final project presentation and the project report. Each one of the three partial contributions is graded. The final mark is determined by the average of equally weighted grades. Basierend auf Rev. 1590. Letzte Änderung am 08.10.2015 um 13:07 durch mreichert. 62 4.1.4 Vision Token / Number: 88csy English title: Vision Credits: 4 ECTS Semester hours: 2 Language: Englisch Turn / Duration: Sporadic (Summer Term) / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive Vision Requirements (contentual): None, knowledge acquired from successful participation of a lecture in computational vision or related topic is advantageous Learning objectives: The students acquire basic knowledge of scientific work and searching for and dealing with scientific literature (evaluation competencies). They are able to analyze specific literature and strategies to search for additional literature from selected sources, extract the key messages, analyze them and evaluate them (evaluation and presentation competences). The students practice scientific discourse and discussion of scientific content. Content: The seminar discusses a focus theme and basic literature is selected. Such literature will be presented in the beginning and the students select a particular topic. After the introductory reading phase in the seminar additional literature will be selected and studied subsequently (literature search). The students prepare and present their theme in a ’spotlight’. A summary document will be prepared and distributed among the other participants. A final extended seminar presentation is delivered, each of which will be discussed in the greater audience. The written summary papers serve as basis to prepare the discussion. Literature: A set of papers will be selected with reference to the specific thematic focus of the seminar. Basis for: – Modes of learning and teaching: Seminar Vision ( Prof. Dr. Heiko Neumann) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The final mark will be determined through the initial ’spotlight’ presentation, the final seminar presentation, and the seminar report. A minimum achievement for all three parts is mandatory. Requirements (formal): None 63 Grading: The mark for the module is determined by the average mark obtained for the ’spotlight’ presentation, the final seminar presentation and the seminar report. The final mark is determined by the average of equally weighted grades given for each part contributions. Basierend auf Rev. 1498. Letzte Änderung am 24.04.2015 um 09:37 durch hneumann. 64 4.1.5 Vision in Man and Machine (in Applied Subject) Token / Number: 88csy71977 English title: Vision in Man and Machine (in Applied Subject) Credits: 4 ECTS Semester hours: 3 Language: Englisch Turn / Duration: Sporadic (Summer Term) / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Computer Science and Media, M.Sc., Application Subject, Computer Vision Cognitive Systems, M.Sc., Application Subject Cognitive Vision Requirements (contentual): None, prior knowledge acquired from "Computer Vision I" (or similar lecture) is beneficial Learning objectives: The students acquire knowledge about models and mechanisms of visual information processing in biological and technical systems (professional competence). They become acquainted with formal and algorithmic concepts for the description of processing principles and their coupling with visual information processing in cognitive systems (methodological expertise). They are able to make use of biological principles and transfer them for computational approaches in technical applications (transfer and evaluation competence). Content: - Introduction Feature extraction and visual cortex Feature grouping and shape detection Motion detection and integration Depth from stereo Object recognition Neural processing of faces Attention Spatial navigation Analysis of biological and articulated motion Literature: The following literature list defines a reference. Further hints to specific literature are given at the beginning of the course program: - E.T. Rolls, G. Deco: Computational Neuroscience of Vision, Oxford Univ. Press, 2002 - C. Curio, H.H. Bülthoff, M.A. Giese (Eds.): Dynamic Faces. MIT Press, 2011 - R. Szeliski: Computer Vision. Springer, 2011 Basis for: – Modes of learning and teaching: Lecture Vision in Man and Machine, 2 SWS) (Prof. Heiko Neumann) Exercise Vision in Man and Machine, 1 SWS) (Tobias Brosch) Exercises serve as a means for implementation and practical testing of the techniques and methods discussed in the lecture. Estimation of effort: Active Time: (lecture) 45 h Preparation and Evaluation: 75 h Sum: 120 h 65 Course assessment and exams: The exams are oral or written depending on the number of participants and cover the contents of lecture and exercises. The exact modes are announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations in cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1514. Letzte Änderung am 07.06.2015 um 18:06 durch hneumann. 66 4.2 Visual Computing 4.2.1 Data Visualization Token / Number: 88csy?????? English title: Data Visualization Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Timo Ropinski Training staff: Prof. Dr. Timo Ropinski Integration of module into courses of studies: Computer Science, B.Sc., Main Subject, Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, B.Sc., Main Subject, Computer Science and Media, M.Sc., Core Subject, Mediale Informatik Software-Engineering, B.Sc., Main Subject, Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Cognitive Systems, M.Sc., Specialization Subject Cognitive Systems, M.Sc., Application Subject Visual Computing Computer Science, Lehramt, Optional Module, Requirements (contentual): Grundlegende Kenntnisse in der Computergrafik werden vorausgesetzt. Learning objectives: Die Studierenden kennen grundlegende Konzepte und Algorithmen aus dem Bereich Visualisierung und können diese anwenden. Sie sind in der Lage, abstrakte und räumliche Daten so zu visualisieren, dass gewünschte Zusammenhänge klar verständlich werden. Des Weiteren können sie ein breites Spektrum an Visualisierungstechniken technisch umsetzen, oder sofern in Anwendungen verfügbar, erfolgreich anwenden. Content: Es werden die Grundlagen aus verschiedenen Bereichen der Visualisierung vermittelt. Dabei werden die bearbeiteten Techniken in den Kontext der Visualisierungs-Pipeline eingeordnet, welche als roter Faden für das Modul gilt. Der Hauptfokus liegt dabei auf interaktiven Visualisierungstechniken, welche es dem Benutzer erlauben mit den Visualisierungen zu interagieren, um beispielsweise die darzustellenden Daten zu filtern oder Darstellungsparameter zu verändern. Es werden die folgenden Themen behandelt: Einordnung der Teilgebiete Die Visualisierungs Pipeline Datenstrukturen für räumliche Daten Visualisierung von Skalar-, Vektor und Tensor-Feldern Visualisierung Multi-Parametrischer Daten Glyph-basierte Techniken Ausgewählte Aspekte der visuellen Wahrnehmung Anwendung moderner Visualisierungs Systeme ILIAS: – 67 Literature: - Es existiert kein Lehrbuch, welches alle behandelten Aspekte abdeckt. Daher wird spezielle Literatur zu den einzelnen Kapiteln in der Vorlesung angegeben. Als übergreifende Werke sind die folgenden Bücher zu nennen: Matt Ward, Georges Grinstein, Daniel Keim: Interactive Data Visualization – Foundations, Techniques, and Applications, CRC Press 2010. Tamara Munzner: Visualization Analysis and Design, AK Peters 2014. Colin Ware: Information Visualization: Perception for Design, Morgan Kaufmann 2012. Alexandru C. Telea: Data Visualization: Principles and Practice, AK Peters 2014. Basis for: – Modes of learning and teaching: Lecture Visualisierung, 3 SWS (Prof. Dr. Timo Ropinski) Exercise Visualisierung, 1 SWS (Robin Skånberg) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung, welche die Inhalte aus der Vorlesung und den Übungen abdeckt, erfolgt schriftlich oder mündlich. Requirements (formal): Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei einer erfolgreichen Teilnahme an den Übungen wird dem Studierenden ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe gewährt. Eine Notenverbesserung von 5,0 auf 4,0 ist nicht möglich (§13 Absatz 4 der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Informatik und Medieninformatik). Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Basierend auf Rev. 1544. Letzte Änderung am 16.06.2015 um 14:01 durch vpollex. 68 4.2.2 Visual Computing Token / Number: 88csy?????? English title: Visual Computing Credits: 4 ECTS Semester hours: 2 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Timo Ropinski Training staff: Prof. Dr. Timo Ropinski Integration of module into courses of studies: Computer Science, M.Sc., Seminar, Software-Engineering, M.Sc., Seminar, Computer Science and Media, M.Sc., Seminar, Cognitive Systems, M.Sc., Application Subject Visual Computing Requirements (contentual): Grundlegende Kenntnisse in den Bereichen Computergrafik und Visualisierung können hilfreich sein, sind aber keine notwendige Voraussetzung. Learning objectives: Die Studierenden erlernen es sich wissenschaftliche Themen selbstständig zu erarbeiten. Dabei wird sich Themen-spezifisches Wissen individuell unter Hinzunahme der gestellten Primärliteratur und der hinzugezogenen Sekundärquellen angeeignet. Dieses Wissen wird dann im Rahmen einer schriftlichen Abhandlung wissenschaftlich aufbereitet und während des Seminars in Form eines mündlichen Vortrags präsentiert. Die vertiefte Auseinandersetzung mit dem zu bearbeitenden Thema stellt eine ideale Voraussetzung für die Anfertigung einer Abschlussarbeit im Bereich Visual Computing dar. Content: Zu Anfang des Seminars werden den Studierenden mögliche Themen vorgestellt. Nach der Themenwahl bearbeitet jeder Studierende das gewählte Thema unter individueller Betreuung. ILIAS: – Literature: Originalarbeiten aus wissenschaftlichen Zeitschriften und Konferenzen. Basis for: – Modes of learning and teaching: SeminarVisual Computing, 2 SWSProf. Dr. Timo Ropinski Estimation of effort: Active Time: 40 h Preparation and Evaluation: 80 h Sum: 120 h Course assessment and exams: Leistungsnachweis über erfolgreiche Teilnahme. Diese umfasst Ausarbeitung, Vortrag und Mitarbeit, sowie regelmäßige Anwesenheit im Seminar. Requirements (formal): Keine Grading: Das Modul ist unbenotet. 69 Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 70 4.3 Pattern Recognition 4.3.1 Algorithms for Emotion Recognition in Human Computer Interaction Token / Number: 88csy8827972534 English title: Algorithms for Emotion Recognition in Human Computer Interaction Credits: 16 ECTS Semester hours: 8 Language: Englisch Turn / Duration: Every Winter Term / 2 Semester Module authority: Prof. Dr. Günther Palm Training staff: Dr. Friedhelm Schwenker Prof. Dr. Harald Traue Dr. Steffen Walter Dr. Dilana Hazer Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Pattern recognition Requirements (contentual): none Learning objectives: Students are able to organize a practical task in the field of affective computing. They are familiar with the underlying theory and the practical issues in the field of emotion recognition. Students are able to analyze multimodal emotional data sets and know the relevant feature extraction and classification techniques. Students can document (written form) and orally present their achieved results. Students learn to work in small teams of two or three persons to work according to defined project plan. Content: The project is organized for two consecutive semesters to develop and to implement solutions in the field of multimodal emotion recognition. The concrete problem is defined in the beginning of the project in the first semester. The first phase of the project is devoted to literature search and discussion of the relevant topics in the field of automatic recognition of emotions. The results of this first phase are presented as preliminary report and oral presentation. In the second phase several basic algorithms are implemented as standalone solutions and evaluated in detail. The result of this phase is a concrete project plan (in written form), including work packages and milestones. The project plan is presented to and discussed with a greater audience at the end of the first semester. This detailed plan is used for carrying out the project in the second semester. In the second semester the overall system is then fully implemented according to this plan. Final result of this project, is an automatic emotion recognition system, project report and oral presentation of the system itself and the achieved results. Literature: A list of basic material will be distributed at the beginning of the first project phase. Basis for: – Modes of learning and teaching: Project Algorithms for emotion recognition in human computer interaction (Dr. Friedhelm Schwenker, Prof. Dr. Harald Traue, Dr. Steffen Walter, Dr. Dilana Hazer) 71 Estimation of effort: Active Time: 120 h Preparation and Evaluation: 360 h Sum: 480 h Course assessment and exams: The timely completion of all the milestones (including the final project report), the oral presentations as well as an active participation in the meetings are mandatory for successful completion of the project. Requirements (formal): none Grading: The mark for the module is determined by the average of the mark given for the final project report and the final oral project presentation. The active contribution of each individual to reach the first and second milestones as well as the reports and oral presentations in the first semester are mandatory prerequisites. Basierend auf Rev. 1626. Letzte Änderung am 09.10.2015 um 17:24 durch mreichert. 72 4.3.2 Neural Networks (in Applied Subject) Token / Number: 88csy8827972531 English title: Neural Networks (in Applied Subject) Credits: 4 ECTS Semester hours: 3 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Günther Palm Training staff: Dr. Friedhelm Schwenker Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Pattern recognition Requirements (contentual): Basic knowledge in computer science and mathematics- Learning objectives: The Students acquire theoretical knowledge in artificial neural networks and are able to apply this to practical applications of small or medium size. Content: Literature: Topics of the lecture Neural Networks (in applied subject) are Biological foundations of neural networks Models of neural networks in technical applications General local learning rules Feedforward neural networks (single and multi-layer, radial basis function nets) Recurrent neural networks (Hopfield networks, echo state networks) Supervized, unsupervised and semi-supervised learning in neural nets - Bishop, Chris: Neural Networks for Pattern Recognition, Oxford University Press, 1995 Basis for: – Modes of learning and teaching: Lecture Neural Networks (in applied subject) (Dr. Friedhelm Schwenker) Exercise Neural Networks (in applied subject) (Dr. Friedhelm Schwenker) Estimation of effort: Active Time: 45 h Preparation and Evaluation: 75 h Sum: 120 h Course assessment and exams: Written exam. Requirements (formal): none Grading: The mark of the module is determined by the mark of the exam. Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 73 4.3.3 Pattern Recognition Token / Number: 88csy8827972532 English title: Pattern Recognition Credits: 4 ECTS Semester hours: 2 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Günther Palm Training staff: Prof. Dr. Günther Palm Dr. Friedhelm Schwenker Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Pattern recognition Requirements (contentual): none Learning objectives: The Students learn to deal with a scientific topic in the field of pattern recognition, to grasp the relevant information and key ideas from the literature, and they learn how to present the material in a scientific talk (including discussion) and in a written report. Content: - Topics of the Seminar Pattern Recognition are for instance Features in speech, images or video data Feature extraction, reduction and selection Learning algorithms (e.g. supervized, partially supervized) Basic classifier architectures (e.g., statistical, syntactical, neural) Clustering algorithms Evaluation classifiers and cluster results Literature: In the first class a list of basic material will be distributed and topics assigned. Basis for: – Modes of learning and teaching: Seminar Seminar Pattern Recognition (Prof. Dr. Günther Palm, Dr. Friedhelm Schwenker) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: Continued participation in classes; preparation of term paper; oral presentation. Requirements (formal): none Grading: The modul is ungraded. Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 74 4.3.4 Pattern Recognition and Machine Learning Algorithms Token / Number: 88csy8827972535 English title: Pattern Recognition and Machine Learning Algorithms Credits: 16 ECTS Semester hours: 8 Language: Englisch Turn / Duration: Every Summer Term / 2 Semester Module authority: Prof. Dr. Günther Palm Training staff: Dr. Friedhelm Schwenker Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Pattern recognition Requirements (contentual): none Learning objectives: Students are able to organize a practical task in the field of pattern recognition using machine learning techniques. They are familiar with the underlying theory and the practical issues in the concrete area, e.g. speech processing. Students are able to analyze the relevant, typical huge data sets and know the relevant feature extraction and classification techniques. Students can document (written form) and orally present their achieved results. Students learn to work in small teams of two or three persons to work according to defined project plan. Content: The project is organized for two consecutive semesters to develop and to implement solutions in the field of pattern recognition. The concrete problem is defined in the beginning of the project in the first semester, possible topics are speech recognition, speaker identification or verification, The first phase of the project is devoted to literature search and discussion of the relevant topics in the area of interest, e.g. speech processing. The results of this first phase are presented as preliminary report and oral presentation. In the second phase several basic algorithms are implemented as standalone solutions and evaluated in detail. The result of this phase is a concrete project plan (in written form), including work packages and milestones. The project plan is presented to and discussed with a greater audience at the end of the first semester. This detailed plan is used for carrying out the project in the second semester. In the second semester the overall system is then fully implemented according to this plan. Final result of this project, is an automatic emotion recognition system, project report and oral presentation of the system itself and the achieved results. Literature: A list of basic material will be distributed at the beginning of the first project phase. Basis for: – Modes of learning and teaching: Project Algorithms for emotion recognition in human computer interaction (Dr. Friedhelm Schwenker) Estimation of effort: Active Time: 120 h Preparation and Evaluation: 360 h Sum: 480 h 75 Course assessment and exams: The timely completion of all the milestones (including the final project report), the oral presentations as well as an active participation in the meetings are mandatory for successful completion of the project. Requirements (formal): none Grading: The mark for the module is determined by the average of the mark given for the final project report and the final oral project presentation. The active contribution of each individual to reach the first and second milestones as well as the reports and oral presentations in the first semester are mandatory prerequisites. Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 76 4.3.5 Reinforcement Learning Token / Number: 88csy8827972533 English title: Reinforcement Learning Credits: 8 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Günther Palm Training staff: Dr. Friedhelm Schwenker Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Pattern recognition Requirements (contentual): none Learning objectives: Students are able to organize a practical task in the field of reinforcement learning (RL). They are familiar with the underlying theory and the practical issues of RL methods. In concrete scenarios students are able to define and design RL solutions and know the relevant RL techniques. Students can document (written form) and orally present their achieved results. Students learn to work in small teams of two or three persons to work according to defined project plan. Content: The project is organized for one semesters to develop and to implement a concrete RL solution. The concrete problem is defined in the beginning of the semester, e.g. a game playing agent The first phase of the project is devoted to literature search and discussion of the relevant topics in RL. The results of this first phase are presented as preliminary report and oral presentation. In the second phase several basic algorithms are implemented as standalone solutions and evaluated in detail. The result of this phase is a concrete project plan (in written form), including work packages and milestones. The project is presented to and discussed by the end of the first semester. Literature: A list of basic material will be distributed in the first class. Basis for: – Modes of learning and teaching: Project Reinforcement learning (Dr. Friedhelm Schwenker) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 180 h Sum: 240 h Course assessment and exams: The timely completion of all the milestones (including the final project report), the oral presentations as well as an active participation in the meetings are mandatory for successful completion of the project. Requirements (formal): none 77 Grading: The mark for the module is determined by the average of the mark given for the final project report and the final oral project presentation. The active contribution of each individual to reach the milestones as well as the reports and oral presentations are mandatory prerequisites. Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 78 4.4 Cognitive Ergonomics 4.4.1 Instructional Design and Technology Token / Number: 88csyneu German title: Instructional Design and Technology Credits: 4 ECTS Semester hours: 2 Language: English and German Turn / Duration: Sporadic (Winter Term2015) / 1 Semester Module authority: Prof. Dr. Tina Seufert Training staff: Prof. Dr. Tina Seufert Dipl. Paed. Felix Wagner Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive ergonomics Requirements (contentual): None. Learning objectives: The Students acquire deep knowledge about theoretical concepts and practical applications of different aspects in Instructional Design and Technologie for supporting teaching and learning processes. They are able to apply this knowledge to practically relevant problems. Content: During the course students will learn and apply different concepts, definitions and methods to support teaching and learning processes by instructional design principles and technological tools. They will learn how to effectively plan, implement and evaluate educational technologies and applications (i.e. learning management systems, social media, mobile learning) and media (text, picture, video, audio) to support learning, communication and collaboration in different contexts. Additionally, students will learn various theoretical perspectives and research findings in this field. Literature: Will be announced at the beginning of the course Basis for: Modes of learning and teaching: Seminar Instructional Design and Technology (Dipl.-Paed. Felix Wagner, Prof. Dr. Tina Seufert) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The students will have to continually participate, present a topic of the field orally and provide the presentation in written form. The exact form will be announced in the course. Additionally some exercises might be assigend. Requirements (formal): None Grading: The mark for the module is determined by an unweighted average of the marks for presentation, the written documents of the presentation and if assigned of the exercises. 79 Basierend auf Rev. 1550. Letzte Änderung am 17.06.2015 um 08:23 durch vpollex. 80 4.4.2 Project - Driver-Vehicle Interaction Token / Number: 88csyneu German title: Driver-Vehicle Interaction Credits: 4 ECTS Semester hours: 2 Language: English Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Martin Baumann Training staff: Prof. Dr. Martin Baumann Members of the Institute of Psychology and Education, Dep. Human Factors Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Systems, M.Sc., Application Subject Cognitive ergonomics Requirements (contentual): None Learning objectives: The participants shall acquire knowledge about the essential and relevant theoretical concepts, methods and challenges related to the development of a man-machine interface for a highly automated vehicle. This knowledge will be practiced and deepened by the practical development of a prototype. Content: The goal of the course is the development of a display concept for a highly automated vehicle. This display shall enable the driver to recognize fast and reliably the vehicle’s state and planned behaviour and thereby facilitate the driver’s generation of an adequate situation model. At the beginning of the course basic models and empirical findings relevant for the design of drivervehicle interaction will be discussed. Additionally, methodological approaches in human-centred design will be presented and practiced. After the treatment of these basic concepts and approaches a prototype concept for the display of the research vehicle of the Institute for Measurement, Control and Microtechnology will be developed together with the members of the Institute. This prototype will be presented at the end of the course. Literature: Will be announced at the beginning of the course Basis for: Modes of learning and teaching: Project Driver-Vehicle-Interaction (Members of the Institute of Psychology and Education, Dep. Human Factors) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The students will have to continually participate, present a topic of the field orally, provide the presentation in written form and write a short research report about their project. The exact form will be announced in the course. Additionally some exercises might be assigend. Requirements (formal): None 81 Grading: The mark for the module is determined by an unweighted average of the marks all written documents (presentation, research report and assigned exercises. Basierend auf Rev. 1550. Letzte Änderung am 17.06.2015 um 08:23 durch vpollex. 82 4.4.3 Project Cognitive Ergonomics Token / Number: 88csyneu German title: Projekt kognitive Ergonomie Credits: 6 ECTS Semester hours: 4 Language: English Turn / Duration: Every Semester / 2 Semester Module authority: Prof. Dr. Anke Huckauf Training staff: Prof. Dr. Anke Huckauf Mitarbeiter des Lehrstuhls Allgemeine Psychologie Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive ergonomics Requirements (contentual): - Psychology for non-Psychologists or Computer Science for Psychologists (1st semester courses) - Cognitive Systems - Concepts, Terminology, Methods Learning objectives: The students possess a deep knowledge about selected topics in cognitive ergonomics, their theoretical foundations, methodological approaches and empirical findings. The can transfer this knowledge to new questions and can implement respective methodologies for research. They know about the possible potentials and limits of certain methodological approaches. Content: After some key readings, students will focus on selected topics in the field of cognitive ergnomics. They will develop an own research question, select and implement neccessary methodological requirements, conduct an experimental study, analyze its outcomes and provide their insights in scientific form. Modes of learning and teaching: Project Cognitive Ergonomics (Prof. Dr. Anke Huckauf) Estimation of effort: Active Time: 90 h Preparation and Evaluation: 90 h Sum: 180 h Course assessment and exams: The exam consists of a presentation of the own work at the beginning, in the middle, and at the end of the project, and of a written manuscript. Requirements (formal): None Grading: The mark for the module is determined by the mark for the written report (70%) as well as by the slides used for the three oral presentations (10% each). Basierend auf Rev. 1550. Letzte Änderung am 17.06.2015 um 08:23 durch vpollex. 83 4.4.4 Psychology of Automation Token / Number: 88csyneu German title: Psychology of Automation Credits: 4 ECTS Semester hours: 2 Language: English and German Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Martin Baumann Training staff: Prof. Dr. Martin Baumann Dr.-Ing. Nicola Fricke Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive ergonomics Cognitive Systems, M.Sc., Interdisciplinary Subject Human-computer dialogue Requirements (contentual): None. Learning objectives: The students possess a deep knowledge about important theoretical concepts, methodological approaches and empirical findings in the area of human-machine automation. They are able to apply this knowledge to successfully analyze and solve practically relevant problems. Content: During the course the students will learn various definitions and taxonomies of automation. The will become acquainted with basic concepts, applications, impacts and drawbacks of automation in human-machine systems. This includes ironies of automation, degrees of automation and specific approaches, e.g. adaptive automation, human-centered automation, human-machine cooperation. The students will learn about various effects of automation and about related concepts such as situation awareness, trust and workload, research findings in the application fields medical domain, aviation and surface transportation. Literature: Will be announced at the beginning of the course Basis for: Cognitive Systems, M.Sc., Application Subject: Cognitive Ergonomics; Cognitive Systems, M.Sc., Interdisciplinary Subject: Human-Computer Dialogue Modes of learning and teaching: Seminar Psychology of Automation (Dr.-Ing. Nicola Fricke, Prof. Dr. Martin Baumann) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The students will have to continually participate, present a topic of the field orally and provide the presentation in written form. The exact form will be announced in the course. Additionally some exercises might be assigend. Requirements (formal): None Grading: The mark for the module is determined by an unweighted average of the marks for presentation, the written documents of the presentation and if assigned of the exercises. 84 Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 85 4.4.5 Transportation Human Factors Token / Number: 88csyneu German title: Transportation Human Factors Credits: 4 ECTS Semester hours: 2 Language: English and German Turn / Duration: Sporadic (Summer Term 2016) / 1 Semester Module authority: Prof. Dr. Martin Baumann Training staff: Prof. Dr. Martin Baumann Members of the Insitute of Psychology and Education, Dept. Human Factors Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive ergonomics Cognitive Systems, M.Sc., Interdisciplinary Subject Human-computer dialogue Requirements (contentual): None. Learning objectives: The students possess a deep knowledge about important theoretical concepts, methodological approaches and empirical findings in the area of transportation human factors. The are able to apply this knowledge to successfully analyze and solve practically relevant problems. Content: During the course the students will become acquainted with essential issues, methods and theoretical concepts of the domain of transportation human factors. These include methodological approaches in the analysis of driver behaviour, psychological foundations of driver behaviour, the effect of driver assistance systems on driver behaviour and current issues in the design of drivervehicle interaction. Literature: Will be announced at the beginning of the course Basis for: Cognitive Systems, M.Sc., Application Subject: Cognitive Ergonomics; Cognitive Systems, M.Sc., Interdisciplinary Subject: Human-Computer Dialogue Modes of learning and teaching: Seminar Transportation Human Factors (Prof. Dr. Martin Baumann or Members of the Institute of Psychology and Education, Dept. Human Factors) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The students will have to continually participate, present a topic of the field orally and provide the presentation in written form. The exact form will be announced in the course. Additionally some exercises might be assigend. Requirements (formal): None Grading: The mark for the module is determined by an unweighted average of the marks for presentation, the written documents of the presentation and if assigned of the exercises. Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 86 4.5 Data Science 4.5.1 Big Data Analytics Token / Number: 88csyneu English title: Big Data Analytics Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Martin Theobald Training staff: Prof. Dr. Martin Theobald Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Informationssysteme Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Specialization Subject, Informationssysteme Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Specialization Subject, Informationssysteme Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Application Subject Data science Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Grundkenntnisse zu “Datenbanken und Informationssytemen” und “Data Science”, wie sie beispielsweise in der Vorlesung Einführung in Data Science vermittelt werden, sind von Vorteil. Learning objectives: Der Kurs vermittelt den Studierenden einen detaillierten Einblick in die Funktionsweise und die theoretischen Grundlagen zur skalierbaren Analyse und verteilten Verarbeitung von großen Datenmengen. Die Studierenden erkennen, welche Datenstrukturen und Algorithmen der verteilten Analyse von großen Datenmengen zu Grunde liegen. Des Weiteren sind die Studierenden in der Lage, komplexe Anwendungen mittels dieser Ansätze zu realisieren. 87 Content: - - Literature: Die Mastervorlesung Big Data Analytics vertieft die Grundkenntnisse, welche die Studierenden im Bachelorstudiengang in den Bereichen “Datenbanken und Informationssysteme” sowie “Data Science” erlangt haben. Die Vorlesung geht eingehend auf die Funktionsweisen und die theoretischen Grundlagen verteilter Informationssysteme sowie der verteilten Datenanalyse ein. Die Vorlesung beginnt mit den statistischen Grundlagen zur verteilten Datenverarbeitung und legt insbesondere einen Fokus auf die Ausführung von verteilten Datenbankoperationen im gesamten Spektrum von “Create, Read, Update, Delete” (CRUD) mittels klassischer SQL und aktueller NoSQL-Architekturen. Synchronisationsverfahren, Recovery sowie Client-Server und Client-Client Architekturen von verteilten Dateisystemen in Apache Hadoop und MapReduce. Hauptspeicherorientierte, verteilte Datenverarbeitung in Apache Spark. Exakte, parallele Ausführung von traditionellen Transaktionsmodellen wie “Atomicity, Consistency, Isolation und Durabiltiy” (ACID) sowie relaxierte Varianten mit eventueller Konsistenz (“CAP Theorem”) Verteilungs- und Partitionierungsstrategien für große Datenmengen (“Sharding”) mit MapReduce Skalierbare Ausführung von analytischen Anfragen im Bereich OLAP und OLTP Verteilte Graphdatenbanksysteme Weitere Anwendungen im Bereich des Maschinellen Lernens und der Visualisierung von großen Datenmengen Zusammenfassend bietet die Vorlesung Big Data Analytics einen detaillierten Einblick in die oben genannten Technologien und zeigt diese in ihrem Zusammenspiel. Im Gegensatz zum Bachelorkurs “Einführung in Data Science” liegt hier der Schwerpunkt in den theoretischen Grundlagen und statistischen Methoden, die der Datenverarbeitung in verteilten Informationssystemen zu Grunde liegen. - Vorlesungsskript Basis for: Der Kurs bietet eine ideale Basis für weitere Projekt- und Masterarbeiten in den Bereichen “Datenbanken und Informationssysteme” sowie “Data Science”, welche von DBIS angeboten werden. Modes of learning and teaching: Lecture Big Data Analytics, 3 SWS (Prof. Martin Theobald) Exercise Big Data Analytics, 1 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt in Form einer schriftlichen Klausur. Bei geringer Teilnahme erfolgt die Modulprüfung ggf. mündlich; dies wird zu Beginn der Veranstaltung bekannt gegeben. Requirements (formal): Keine. Grading: Die Modulnote ergibt aus der Modulprüfung. Bei einer erfolgreichen Teilnahme an den Übungen wird dem Studierenden ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe gewährt. Eine Notenverbesserung von 5,0 auf 4,0 ist nicht möglich (§13 Absatz 4 der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Informatik und Medieninformatik). Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Basierend auf Rev. 1624. Letzte Änderung am 09.10.2015 um 17:05 durch mreichert. 88 4.5.2 Business Process Intelligence Token / Number: 88csy71997 English title: Business Process Intelligence Credits: 6 ECTS Semester hours: 4 Language: Deutsch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Manfred Reichert Training staff: Prof. Dr. Peter Dadam Prof. Dr. Manfred Reichert Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Informationssysteme Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Specialization Subject, Informationssysteme Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Application Subject Data science Requirements (contentual): Grundlagenwissen zu Datenbanken und Informationssystemen, wie es in den Modulen Datenbanksysteme – Konzepte und Modelle und Business Process Management vermittelt wird. Learning objectives: Die Studierenden können Methoden, Konzepte und Software-Werkzeuge für die Extraktion von Daten aus Informationssystemen sowie für deren konsistente Aufbereitung und intelligente Analyse beschreiben. Sie können charakteristische Anwendungsfälle von Business Process Intelligence (BPI) benennen und technologische Realisierungsmöglichkeiten sowie deren Nutzen und Aufwände bewerten. Darüber hinaus sind sie in der Lage, aktuelle Entwicklungen (z. B. Process Mining, Process Performance Measurement) zu vergleichen. Content: - Data-Warehouse-Systeme: Architektur; Extraktion, Transformation und Laden von Daten; Multidimensionales Daten-modell; Anfrageverarbeitung und optimierung, materialisierte Views - Techniken für die Analyse von (Anwendungs-)Daten: OLAP, Data Mining - Techniken für die Analyse von Prozessdaten: Process Mining, Conformance Checking, Process Variants Mining - Process Performance Measurement: Key Performance Indicators, Process Warehouse, Software-Werkzeuge - Aktuelle Trends aus Forschung und Entwicklung, z.B. Business Process Compliance und Business Rule Engines Literature: - Vorlesungsskript - Weiterführende Literatur wird in der Lehrveranstaltung bekannt gegeben. Basis for: Masterarbeiten zum Thema Business Process Intelligence. Modes of learning and teaching: Lecture Business Process Intelligence, 2 SWS () Exercise Business Process Intelligence, 1 SWS () Laboratory Business Process Intelligence, 1 SWS () 89 Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt in Form einer schriftlichen Klausur. Bei geringer Teilnahme erfolgt die Modulprüfung ggf. mündlich; dies wird zu Beginn der Veranstaltung bekannt gegeben. Requirements (formal): keine Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei einer erfolgreichen Teilnahme an den Übungen und am Labor wird dem Studierenden ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe gewährt. Eine Notenverbesserung von 5,0 auf 4,0 ist nicht möglich (§13 Absatz 4 der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Informatik und Medieninformatik). Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Basierend auf Rev. 1622. Letzte Änderung am 09.10.2015 um 16:42 durch mreichert. 90 4.5.3 Data Mining Token / Number: 88csy71994 English title: Data Mining Credits: 6 ECTS Semester hours: 4 Language: Deutsch Turn / Duration: Every Winter Term / 1 Semester Module authority: Dr. Friedhelm Schwenker Training staff: Dr. Friedhelm Schwenker Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Neuroinformatik Computer Science and Media, M.Sc., Specialization Subject, Neuroinformatik Computer Science, M.Sc., Specialization Subject, Mustererkennung Computer Science and Media, M.Sc., Specialization Subject, Mustererkennung Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Specialization Subject Cognitive Systems, M.Sc., Application Subject Data science Requirements (contentual): Grundkenntnisse in Neuroinformatik Learning objectives: Die Studierenden kennen die wesentlichen Methoden und Verfahren des Data Mining. Sie kennen die grundlegenden Methoden der uni-variaten und multivariaten Statistik und sind speziell mit den maschinellen Lernverfahren des Data Mining zur Clusteranalyse, Klassifikation und Regression vertraut und können diese in kleineren Aufgabenstellungen auch anwenden. Content: - Uni- und multivariate statistische Verfahren Clusteranalyseverfahren Visualisierung und Dimensionsreduktion Lernen von Assoziationsregeln Klassifikationverfahren Regrossion und Prognose Statistische Evaluierung Literature: - Mitchell, Tom: Machine Learning, Mc Graw Hill, 1997 - Bishop, Chris: Pattern Recognition and Machine Learning, Springer, 2007 - Hand, David und Mannila, Heikki und Smyth, Padhraic: Principles of Data Mining, MIT Press, 2001 - Witten, Ian H. und Frank, Eibe: Data mining, Morgan Kaufmann, 2000 - Skript zur Vorlesung, 2011 Basis for: – Modes of learning and teaching: Lecture Data Mining, 2 SWS (Dr. Friedhelm Schwenker) Exercise Data Mining, 2 SWS (Dr. Friedhelm Schwenker) 91 Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt schriftlich. Requirements (formal): Bachelor Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei erfolgreicher Teilnahme an den Übungen wird dem Studierenden ein Notenbonus gemäß §13 (5) der fachspezifischen Prüfungsordnung Informatik/Medieninformatik/Software Engineering gewährt. Basierend auf Rev. 1563. Letzte Änderung am 07.08.2015 um 07:58 durch vpollex. 92 4.5.4 Information Retrieval and Web Mining Token / Number: 88csyneu English title: Information Retrieval and Web Mining Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Martin Theobald Training staff: Prof. Dr. Martin Theobald Integration of module into courses of studies: Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science, M.Sc., Specialization Subject, Informationssysteme Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Specialization Subject, Informationssysteme Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Specialization Subject, Informationssysteme Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Application Subject Data science Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Grundlagenwissen zu Stochastik, wie in der Vorlesung Angewandte Stochastik I vermittelt, ist von Vorteil, aber nicht zwingend erforderlich. Grundkenntnisse zu Datenbanken und Informationssystemen sind von Vorteil. Learning objectives: Der Kurs bietet den Studierenden folgende Lernziele: - Die Studierenden erkennen, wie moderne Suchmaschinen funktionieren. - Die Studierenden analysieren, welche Algorithmen der Ähnlichkeitssuche und Ranglistengenerierung unterliegen. - Die Studierenden analysieren, wie diese Algorithmen für die Interessen individueller Benutzer personalisiert werden können. - Die Studierenden erkennen, wie diese Algorithmen skalierbar auf verteilte Rechnerarchitekturen abgebildet werden könnnen. - Des Weiteren erkennen die Studierenden, wie große Webdatensammlungen zur Klassifikation und Ähnlichkeitssuche von Dokumenten effizient analysiert werden können. 93 Content: - Information-Retrieval ist eine Disziplin, die zentrale Aspekte der Dokumentenverarbeitung, der automatischen Ranglistengenerierung sowie der skalierbaren Datenanalyse miteinander verbindet. Ein Kernthema im Information-Retrieval ist die effektive und effiziente und Bearbeitung von Stichwortanfragen. Dabei sind moderne Verfahren im Information-Retrieval weder auf reine Stichwortanfragen noch auf Textdokumente beschränkt, sondern können zunehmend flexibel mit den verschiedensten Datenformaten sowie mit natürlichsprachlichen Benutzeranfragen umgehen. Der Bereich Web-Mining fokusiert auf eine Art der Informationsverarbeitung, die unabhängig von spezifischen Benutzeranfragen nach charakteristischen Mustern in großen Sammlungen von Webdokumenten sucht. Bekannte Beispiele hierfür sind wohl Google’s PageRank Algorithmus oder Produktempfehlungen bei Amazon. Aktuelle Ansätze im Information-Retrieval und Web-Mining verfolgen dabei zunehmend Techniken, die aus dem maschinellen Lernen bzw. der automatischen Sprachverarbeitung stammen, um gezielt strukturierte Informationen aus Textinhalten zu extrahieren und in Form von semantischen Wissensrepräsentationen zu speichern. Wissensbasierte Systeme, wie beispielsweise Google’s Knowledge Graph, greifen dabei auf reichhaltige Wissensbasen zurück, die aus Milliarden von Webdokumenten automatisch extrahiert wurden. Zusammenfassend gliedert sich er Inhalt der Vorlesung in folgende Punkte: Grundlagen aus der Wahrscheinlichkeitstheorie und statistischen Modellierung. Boolesche Auswertung von Suchanfragen und Vektorraummodell. Probabilistische Auswertungsverfahren zur Ranglistengenerierung (ProbabilisticIR, Okapi BM25). Personalisierte Suche mit Relevanzfeedback (Robertson/Sparck-Jones, Rocchio). Evaluation von Suchmaschinen (Precision/Recall, MAP, NDCG, etc.). Indexierung und effiziente Anfrageauswertung (Quit&Continue, verschiedene Top-k Algorithmen). Linkanalyse (PageRank, HITS, TrustRank, SpamRank). Clustering und automatische Klassifikation von Objekten (k-NN, k-Means, Naive Bayes, SVMs). Informationsextraktion mit Hilfe maschineller Lernverfahren sowie Grundlegende Techniken zur Verarbeitung natürlicher Sprache (POS-Tagging, Named-EntityDetection, Dependenzparsing). Literature: - Vorlesungsskript - Introduction to Information Retrieval. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze. Cambridge University Press, 2008. http://nlp.stanford.edu/IR-book/ - Modern Information Retrieval, 2nd Ed. Ricardo Baeza-Yates, Berthier RibeiroNeto. Addison Wesley, 2011. http://www.mir2ed.org/ - Mining of Massive Datasets. Jure Leskovec, Anand Rajaraman, Jeff Ullman. Cambridge University Press, 2011. http://www.mmds.org/ Basis for: Weitere Vorlesungen im Kontext "‘Data Science"’. Masterarbeiten zum Thema Information Retrieval & Web Mining. Modes of learning and teaching: Lecture Information Retrieval & Web Mining, 3 SWS ( Prof. Dr. Martin Theobald) Exercise Information Retrieval & Web Mining, 1 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h 94 Course assessment and exams: Die Modulprüfung erfolgt in Form einer schriftlichen Klausur. Bei geringer Teilnahme erfolgt die Modulprüfung ggf. mündlich; dies wird zu Beginn der Veranstaltung bekannt gegeben. Requirements (formal): Keine. Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei einer erfolgreichen Teilnahme an den Übungen wird dem Studierenden ein Notenbonus auf die Modulprüfung bis zur nächst besseren Zwischenstufe gewährt. Eine Notenverbesserung von 5,0 auf 4,0 ist nicht möglich (§13 Absatz 4 der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Informatik und Medieninformatik). Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Basierend auf Rev. 1586. Letzte Änderung am 08.10.2015 um 12:26 durch mreichert. 95 4.5.5 Introduction to Data Science Token / Number: 88csyneu English title: Introduction to Data Science Credits: 6 ECTS Semester hours: 4 Language: English Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Martin Theobald Training staff: Prof. Dr. Martin Theobald Integration of module into courses of studies: Computer Science, B.Sc., Main Subject, Computer Science and Media, B.Sc., Main Subject, Software-Engineering, B.Sc., Main Subject, Software-Engineering Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, M.Sc., Core Subject, Software Engineering Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Application Subject Data science Cognitive Systems, M.Sc., Specialization Subject Requirements (contentual): Keine. Learning objectives: Die Studierenden erkennen, wie die verteilte Datenverarbeitung mit aktuellen Technologien im Bereich der KeyValue-Stores und NoSQL-Datenbanken funktioniert. Die Studenten analysieren, wie eine komplexe Anwendung mittels dieser Systeme realisiert werden kann und implementieren auch aktiv eine solche Anwendung im Verlauf des Kurses. Desweiteren vermittelt der Kurs einen Überblick über die allgemeine Funktionsweise und die theoretischen Grundlagen der verteilten Datenverarbeitung. 96 Content: Literature: Der Begriff “Data Science” ist zu einem wichtigen Schlagwort im Umgang mit großen Datenmengen geworden. DBIS reagiert auf diese aktuelle Entwicklung mit einer neuen Vorlesung Einführung in Data Science, in welcher den Studierenden bereits im Bachelorstudium die Grundkonzepte der skalierbaren Verarbeitung von großen Datenmengen in verteilten Rechnerarchitekturen vermittelt werden. Die Vorlesung gibt Einblicke in die Funktionsweise verteilter Dateisysteme, wie beispielsweise das verteilte Hadoop-Dateisystem (HDFS), und vermittelt den Studierenden einen ersten, praxisorientierten Umgang im Programmieren von verteilten Anwendungen in MapReduce. Des Weiteren ermöglicht der Kurs einen Einblick in aktuelle Programmierschnittstellen (API’s) und Datenmodelle im sogenannten “Apache-Hadoop Ecosystem”. Dabei sammeln die Studenten ebenfalls praktische Erfahrung mit weiteren Werkzeugen im Bereich der sogenannten KeyValue-Stores und aktuellen NoSQL-Datenbanken wie Apache HBase, Apache HIVE, Apache SPARK und MongoDB. Vertiefende Themen zu den theoretischen Grundlagen der verteilten Datenverarbeitung, zur Modellierung von klassischen Datenbankkonzepten mittels dieser neuen Technologien und zur Verarbeitung verschiedener Dokumentformate wie beispielsweise Textund XML-Daten, aber auch neuer Datenformate wie JSON runden den Kurs ab. Die Vorlesung Einführung in Data Science gibt einen ersten Einblick die oben genannten Technologien und zeigt diese auch im Zusammenspiel. Der Schwerpunkt liegt in der praxisorientierten Anwendung der zu Grunde liegenden Architekturen, in welcer die Studierenden anhand von wöchentlichen, aufeinander aufbauenden Programmierübungen ein komplexes Projekt in Hadoop zu implementieren erlernen. Dabei wird auch auf die theoretischen Grundlagen dieser Technologien eingegangen sowie ein Einblick in die internen Aspekte dieser Systeme gewährt. - Vorlesungsskript Basis for: Der Kurs bietet eine ideale Basis für weitere Projekte und Vertiefungsthemen im Bereich “Data Science”, welche von DBIS angeboten werden. Modes of learning and teaching: Lecture Einführung in Data Science, 2 SWS (Prof. Martin Theobald) Laboratory Einführung in Data Science, 2 SWS () Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: Die Modulprüfung erfolgt in Form einer schriftlichen Klausur. Bei geringer Teilnahme erfolgt die Modulprüfung ggf. mündlich; dies wird zu Beginn der Veranstaltung bekannt gegeben. Als Leistungsnachweise für das Labor sind eine praktische Problemlösung, schriftliche Kurzberichte sowie eine Ergebnispräsentation zu erbringen. Requirements (formal): Keine. Grading: Die Modulnote ergibt sich zu 50% aus der Modulprüfung und zu 50% aus dem Labor. Basierend auf Rev. 1585. Letzte Änderung am 08.10.2015 um 12:20 durch mreichert. 97 4.5.6 Project Non-Traditional Database Architectures Token / Number: 88csyneu English title: Project Non-Traditional Database Architectures Credits: 8 ECTS Semester hours: 4 Language: Deutsch/Englisch Turn / Duration: Every Semester / 1 Semester Module authority: Prof. Dr. Martin Theobald Training staff: Prof. Dr. Martin Theobald Prof. Dr. Manfred Reichert Integration of module into courses of studies: Computer Science, M.Sc., Project, Computer Science and Media, M.Sc., Project, Computer Science, Lehramt, Optional Module, Cognitive Systems, M.Sc., Application Subject Data science Requirements (contentual): Grundlagenwissen zu Informationssystemen, wie es z. B. in den Modulen Datenbanksysteme – Konzepte und Modelle und Data Science vermittelt wird. Learning objectives: Die Studierenden sind in der Lage, innovative Anwendungs- bzw. Informationssysteme auf Grundlage aktueller Datenbankarchitekturen (z.B. aus dem Bereich KeyValue-Stores, NoSQL und eigener Prototypen) zu entwickeln. Ferner können sie eine komplexe Aufgabenstellung analysieren, verwandte Lösungen eigenständig auswählen und ggf. transferieren sowie selbständig im Team, unter Verwendung moderner Methoden und Werkzeuge zur Entwicklung von Datenbankarchitekturen, ein skalierbares Anwendungssystem zu entwickeln. Sie sind weiter in der Lage, ihre Ergebnisse mit anderen Teams abzustimmen, professionell zu dokumentieren und im Rahmen einer Präsentation überzeugend vorzustellen. Schließlich besitzen sie wichtige Schlüsselqualifikationen, wie die Fähigkeiten sich in ein neues und komplexes Themengebiet einzuarbeiten, Erkenntnisse aus der wissenschaftlichen Literatur aufzugreifen sowie ein Projekt professionell abzuwickeln. Content: Zu Beginn des Projektes werden in einem Workshop konkrete Themenstellungen erarbeitet und diskutiert. Danach werden Teams gebildet und jedem Team wird eine konkrete Aufgabenstellung zugewiesen, die es dann eigenständig zu bearbeiten gilt. Am Ende des Projekts soll ein ablauffähiges Anwendungssystem stehen, das sich durch innovative Lösungen und Eigenschaften auszeichnet. Mögliche Themen sind: Entwurf und Realisierung eines skalierbaren Informationssystems mit MapReduce/Hadoop Entwurf und Realisierung von eigenen Software-Prototypen im “Big Data” Bereich Gestaltung, Entwurf und Implementierung von Visualisierungen für große Datensammlungen Entwurf und Implementierung mobiler Dienste und Applikationen (z. B. für iPhone, iPad, Android) - Literature: Basis for: - Literatur wird in der Lehrveranstaltung bekannt gegeben. Das Projektmodul bietet eine fundierte Grundlage für eine Masterarbeit im Bereich Datenbanken und Informationssysteme bzw. Data Science. 98 Modes of learning and teaching: Project Nicht-traditionelle Datenbankarchitekturen, 4 SWS (Prof. Theobald) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 180 h Sum: 240 h Course assessment and exams: Anwesenheit bei den Workshops und Besprechungen mit dem Betreuer sowie aktive Mitarbeit im Projektteam wird vorausgesetzt. Die genauen Regeln werden zu Beginn der Lehrveranstaltung bekannt gegeben. Als Leistungsnachweise sind ein Abschlussbericht, eine Abschlusspräsentation sowie eine praktische Problemlösung zu erbringen. Requirements (formal): keine Grading: Es werden Noten für den Abschlussbericht, die Abschlusspräsentation sowie die praktische Problemlösung vergeben. Die Gewichtung dieser Noten ist jeweils abhängig vom Thema und wird zu Beginn des Projekts bekannt gemacht. Basierend auf Rev. 1596. Letzte Änderung am 08.10.2015 um 14:41 durch mreichert. 99 Martin 4.5.7 Research Trends in Data Science Token / Number: 88csyneu English title: Research Trends in Data Science Credits: 4 ECTS Semester hours: 2 Language: Englisch Turn / Duration: Every Semester / 1 Semester Module authority: Prof. Dr. Martin Theobald Training staff: Prof. Dr. Martin Theobald Prof. Dr. Manfred Reichert Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Data science Requirements (contentual): Keine Learning objectives: Studierende lernen anhand eines konkreten, fachbezogenen und abgegrenzten Themas die Aufbereitung von Informationen. Sie können eine gegliederte und mit korrekten Zitaten ausgestattete und im Umfang begrenzte Ausarbeitung erstellen. Sie können einen freien Vortrag vor kleinem Publikum halten. Die dazu benötigten Präsentationsmaterialien entsprechen didaktischen Maßstäben. Studierende können sich in eine fachliche Diskussion einbringen. Sie sind in der Lage konstruktive Kritik zu geben und entgegen zu nehmen. Sie können anhand der vermittelten Kriterien die Darstellung anderer Vortragender bewerten und einordnen. Content: Es werden fortgeschrittene Forschungsaspekte (basierend auf aktuellen wissenschaftlichen Veröffentlichungen) aus dem weitläufigen Gebiet “Data Science” und “Big Data” bearbeitet und diskutiert. Aktuelle Themengebiete sind u.a.: Aktuelle Architekturen von KeyValue-Stores und NoSQL-Datenbanken Skalierbare Verarbeitung großer Datenmengen in MapReduce Verteilte Graphdatenbanken Probabilistische und Temporale Datenbankmodelle und Systeme Maschinelles Lernen in verteilten Umgebungen Visualisierung großer Datenmengen Analyse von Sozialen Netzwerken Literature: - Wird bei der Themenvergabe bekannt gegeben Basis for: Keine Modes of learning and teaching: Seminar Aktuelle Forschungstrends in Data Science () Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: Leistungsnachweis über erfolgreiche Teilnahme. Diese umfasst Anwesenheit und enthält Ausarbeitung, Vortrag und Mitarbeit 100 Requirements (formal): Keine Grading: unbenotet Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 101 4.6 User-Centered Planning 4.6.1 Project User-Centered Planning Token / Number: 88csynew German title: Projekt Nuterzentrierte Handlungsplanung Credits: 16 ECTS Semester hours: 8 Language: English or German Turn / Duration: Sporadic / 2 Semester Module authority: Prof. Dr. Susanne Biundo-Stephan Training staff: Prof. Dr. Susanne Biundo-Stephan Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject User-centered planning Computer Science, M.Sc., Project, Requirements (contentual): Students should be familiar with basic AI techniques. Especially knowledge about Automated Planning is helpful. Learning objectives: The students are capable to deal with scientific literature and to identify the state-of-the-art in a specific field of research in artificial intelligence. They can apply scientific methods in order to solve a task in the given context. The students are able to design experiments involving human users, which are adequate for investigating a given hypothesis. They can implement (prototypical) software systems that are necessary to conduct these experiments and are able to analyze the gathered data with respect to the hypothesis. Content: Planning problems describe the world in an abstract way. They provide operators that define how the world can be changed and a desired goal which should be reached. Domain-independent planning systems are capable to automatically generate solutions for any planning problem, which can be specified in the formalism. Thus they provide a core functionality for intelligent systems. Solutions define (1) which steps have to be executed to reach a goal and (2) constraints on the ordering of their execution. Though they form a powerful tool to realize intelligent behavior, there are several challenges when they are integrated into systems that interact with human users. In this project, students deal with challenges that occur when planning-based systems are used in human computer interaction. One such challenge is the explanation of generated plans to human users. Explanations allow a system to answer questions like "Why do I have to perform this action?". Another one is mixed-initiative planning, where planning systems interact with humans during the planning process in order to find a plan collaboratively. A last example is the presentation of plans to human users. This includes, e.g., determining in which ordering the tasks are presented. Literature: Introductional literature will be provided at the beginning of the project. Basis for: - Modes of learning and teaching: Project User-Centered Planning (Prof. Dr. Susanne Biundo-Stephan) Estimation of effort: Active Time: 120 h Preparation and Evaluation: 360 h Sum: 480 h 102 Course assessment and exams: Students have to provide a project report, a documented software system (if the project includes software development), and data, documentation, and analysis of the experimental evaluation (if the project includes such an evaluation). Students have to give a final presentation. Requirements (formal): None Grading: The mark for the module is determined as the weighted average of the grades for report, software system/documentation, evaluation, and presentation. Basierend auf Rev. 1550. Letzte Änderung am 17.06.2015 um 08:23 durch vpollex. 103 4.7 Semantic Web Technology 4.7.1 Project Semantic Web Technologies Token / Number: 88csynew German title: Projekt Semantic Web Technologien Credits: 16 ECTS Semester hours: 8 Language: English Turn / Duration: Sporadic (Winter Term) / 2 Semester Module authority: Jun.-Prof. Dr. Birte Glimm Training staff: Jun.-Prof. Dr. Birte Glimm Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Semantic web technology Requirements (contentual): None Learning objectives: Students are able to conduct a project-oriented, scientific work in the area of Semantic Web technologies. They have the ability to define an innovative project topic, acquire skills and technologies required for the project, find related works and base their own work on them where appropriate. The students are further able to work independently in a team and to apply state-of-the-art methods to develop concepts and solutions for the project topic. They can document the results in the form of a scientific report and present their findings in the form of a presentation. They are able to acquaint themselves with a new topic and to conduct a scientific project. Content: - Assisted by the lecturer, a small team of participants develops independently a suitable project topic in the area of the Semantic Web. Previous related work has to be considered and incorporated into the project as required. The project idea is documented in the form of a written detailed project proposal. The first step within the project is the development of a theoretical concept that considers related work in the area. As a next step, the students develop a detailed plan for the practical realisation of the project. The projects are conducted in small groups of 3 to 4 students. The following steps are planned for conducting the project: - Definition of a topic - Literature review of related work - Concept draft - Evaluation of suitable technologies - Self-learning of the required technical foundations - Architecture design - Development of a concrete plan for conducting the project - Implementation - Integration - Test - Deployment - It is required to document the project. Concrete project topics are defined along the research topics of the institute. 104 Literature: - According to the students’ literature review Basis for: - Modes of learning and teaching: Project Semantic Web Technologies (Jun.-Prof. Dr. Birte Glimm) Estimation of effort: Active Time: 120 h Preparation and Evaluation: 360 h Sum: 480 h Course assessment and exams: Design, implementation and evaluation of the software system; the written project report; the system demonstration Requirements (formal): Lecture Foundations of Semantic Web Technologies or Algorithms in Knowledge Representation Grading: The mark of the module is determined by the implementation result, the written project report and the system demonstration with the ration 2:1:1. Basierend auf Rev. 1550. Letzte Änderung am 17.06.2015 um 08:23 durch vpollex. 105 4.8 Cognitive Smart Systems 4.8.1 Cognitive Smart Systems Token / Number: 88csy????? English title: Cognitive Smart Systems Credits: 16 ECTS Semester hours: 8 Language: Englisch Turn / Duration: Every Winter Term / 2 Semester Module authority: Prof. Dr.-Ing. Frank Slomka Training staff: Prof. Dr.-Ing. Frank Slomka Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive Smart Systems Requirements (contentual): none Learning objectives: Students are developing new methods to control an autonomous underwater vehicles. They are able to design algorithms capable of mission planning, path finding and collision avoidance for smart robots. They know how to design embedded hardware/software systems using platform based design. They could implement algorithms with Matlab/Simulink using code generators to automatically synthesize hardware and software systems of an cognitive system. They know the design flow of embedded systems and master various algorithms for collision avoidance and data fusion. They perform autonomous research on technology and algorithms of cognitive underwater robots and they could reflect their restlts and they are able to give an academic presentation. Content: During the seminar algorithmic foundations for autonomous control of underwater vehicles are being developed. This includes algorithms for collision avoidance (sonar), navigation, location and path determination up to mission planning. The design of the algorithms is performed model-based in the Mathwork environment Matlab / Simulink /Simscape. Algorithms may use different sensors of the underwater vehicle. The aim is to link the teaching content of the program Cognitive Systems with a a heterogeneous diving robotic platform. Literature: Basis for: Modes of learning and teaching: Project Cognitive Smart Systems, 12 LP) (Prof. Dr.-Ing. Frank Slomka) Seminar Cognitive Smart Systems (4) LPProf. Dr.-Ing. Frank Slomka Estimation of effort: Sum: 480 h Course assessment and exams: Das Seminar findet erst ab mindestens 3 Teilnehmern statt. Im Seminar muss ein wissenschaftlicher Aufsatz bearbeitet nd in einer Präsentation vorgestellt werden. Die Projektarbeit muss in einem Bericht dokumentiert werden. Requirements (formal): none 106 Grading: Die Note für das Projekt und das Seminar wird getrennt vergeben. Die Noten werden dann entsprechend der Leistungspunkte gewichtet. Basierend auf Rev. 1509. Letzte Änderung am 28.05.2015 um 15:20 durch vpollex. 107 5 Interdisciplinary Subjects 5.1 Human-Computer Dialogue 5.1.1 Mobile Mensch-Computer-Interaktion Token / Number: 88csy72013 Credits: 6 ECTS Semester hours: 4 Language: Deutsch, Unterlagen in Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Enrico Rukzio Training staff: Prof. Dr. Enrico Rukzio Integration of module into courses of studies: Computer Science, B.Sc., Main Subject, Computer Science, M.Sc., Core Subject, Praktische und Angewandte Informatik Software-Engineering, B.Sc., Main Subject, Software-Engineering, M.Sc., Core Subject, Praktische und Angewandte Informatik Computer Science and Media, B.Sc., Main Subject, Computer Science and Media, M.Sc., Core Subject, Mediale Informatik Cognitive Systems, M.Sc., Interdisciplinary Subject Human-computer dialogue Requirements (contentual): Grundlagenkenntnisse der Mensch-Computer-Interaktion und Pervasive Computing sind von Vorteil. Die relevanten Grundlagen werden für Quereinsteiger nochmals kurz rekapituliert. Learning objectives: Die Studenten erlernen in dieser forschungsorientierte Lehrveranstaltung sehr detaillierte Kenntnisse über Themenbereiche wie Interaktion mit mobilen Endgeräten, die technischen Eigenschaften dieser Geräte (Eingabe, Ausgabe, Sensorik), die Entwicklung interaktiver mobiler Dienste und neuartige Anwendungsbereiche. Hierbei erlernen sie insbesondere Methoden, Konzepte und Werkzeuge bzgl. des Designs, der Entwicklung und der Evaluation entsprechender Anwendungen und Dienste unter Berücksichtigung von Aspekten wie den limitierten Ein- und Ausgabemöglichkeiten, der Vielfalt der Nutzungskontexte und weitere durch die Gerätegröße bedingte technische Limitationen. Die Übung vertieft die theoretischen Aspekte durch praktische Aufgaben im Bereich der Programmierung mobiler Endgeräte mit Fokus auf mobiler MenschComputer-Interaktion, der Verwendung von Sensordaten und des Interaktionsdesign. Content: - Grundlegende Interaktionskonzepte: Texteingabe, Visualisierungstechniken, taktiles Feedback, Mobile Augmented Reality, direkte und indirekte Interaktionen mit entfernten Displays, mobile Interaktion mit der realen Welt, sprachbasierte Interaktion, Wearable User Interfaces - Technologie in mobilen Endgeräte: Sensorik (Lokation, Orientierung, Rotation, etc.), Near Field Communication, persönliche Projektoren, Projector Phones Literature: - Ausgewählte Artikel von Konferenzen CHI, UIST und Mobile HCI - Ausgewählte Artikel von Journalen / Magazinen: IEEE Pervasive Computing und Personal and Ubiquitous Computing - Vorlesungsskript Basis for: Grundlagenkenntnisse der Mensch-Computer-Interaktion und Pervasive Computing sind von Vorteil. 108 Modes of learning and teaching: Lecture Mobile Mensch-Computer-Interaktion, 2 SWS (Prof. Dr. Enrico Rukzio) Exercise Mobile Mensch-Computer-Interaktion, 2 SWS (Julian Seifert, M.Sc. / Christian Winkler, M.Sc.) Estimation of effort: Active Time: 60 h Preparation and Evaluation: 120 h Sum: 180 h Course assessment and exams: In der Regel mündliche Prüfung, ansonsten schriftliche Prüfung von 90 minütiger Dauer. Requirements (formal): Die Anmeldung zur Modulprüfung setzt keinen Leistungsnachweis voraus. Grading: Die Modulnote ergibt sich aus der Modulprüfung. Bei erfolgreicher Teilnahme an den Übungen wird dem Studierenden ein Notenbonus gemäß §13 (5) der fachspezifischen Prüfungsordnung Informatik/Medieninformatik/Software Engineering gewährt. Basierend auf Rev. 1634. Letzte Änderung am 09.10.2015 um 17:44 durch mreichert. 109 5.1.2 Project - Design, Implementation and Evaluation of Dialogue Systems Token / Number: 88csyneu German title: Design, Implementation und Evaluation von Dialog-Systemen Credits: 16 ECTS Semester hours: 2 Language: English and German Turn / Duration: Every Winter Term / 2 Semester Module authority: Prof. Dr. Martin Baumann Prof. Dr. Wolfgang Minker Training staff: Prof. Dr. Martin Baumann Prof. Dr. Wolfgang Minker Members of the Institute of Communication Technology and Members of the Institute of Psychology and Education, Dep. Human Factors Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Human-computer dialogue Requirements (contentual): None. No prerequisites from other lectures required. Learning objectives: The students show a practical understanding of multimodal spoken dialogue systems technology through all development phases: design, implementation and evaluation, basics of a human-centered design process, and relevant psychological theories. They are aware of the interdisciplinarity of the research field. They apply their acquired knowledge through project-oriented practical work. Content: In the framework of spoken dialogue systems development and human factor studies several individual topics are proposed as practical studies. They may depend on the current research topics at the Dialogue Systems Group and the Human Factors Department. Two students will work in a group with respective backgrounds in computer science and psychology. Based on human-centred design appraoch a concept of dialogue system will developed, implemented and evaluated over the course of the two semesters. Literature: To be distributed during the project Basis for: Modes of learning and teaching: Project Design, Implementation and Evaluation of Dialogue Systems (Profs. Dres. Martin Baumann and Wolfgang Minker) Estimation of effort: Active Time: 180 h Preparation and Evaluation: 300 h Sum: 480 h Course assessment and exams: Certificate after fulfilment of the following criteria: at least three meetings with the supervisors to discuss progress of work; presentation of a course topic in the seminar part; final presentation (demo) and discussion; short description and illustration (max. 20 pages); submission of the final version (hard/software and documentation) of the project to the supervisors. 110 Requirements (formal): None Grading: The mark for the module is determined by the average mark for the project report and the written documents (slides, summary) of the seminar presentation. Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 111 5.1.3 Psychology of Automation Token / Number: 88csyneu German title: Psychology of Automation Credits: 4 ECTS Semester hours: 2 Language: English and German Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Martin Baumann Training staff: Prof. Dr. Martin Baumann Dr.-Ing. Nicola Fricke Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive ergonomics Cognitive Systems, M.Sc., Interdisciplinary Subject Human-computer dialogue Requirements (contentual): None. Learning objectives: The students possess a deep knowledge about important theoretical concepts, methodological approaches and empirical findings in the area of human-machine automation. They are able to apply this knowledge to successfully analyze and solve practically relevant problems. Content: During the course the students will learn various definitions and taxonomies of automation. The will become acquainted with basic concepts, applications, impacts and drawbacks of automation in human-machine systems. This includes ironies of automation, degrees of automation and specific approaches, e.g. adaptive automation, human-centered automation, human-machine cooperation. The students will learn about various effects of automation and about related concepts such as situation awareness, trust and workload, research findings in the application fields medical domain, aviation and surface transportation. Literature: Will be announced at the beginning of the course Basis for: Cognitive Systems, M.Sc., Application Subject: Cognitive Ergonomics; Cognitive Systems, M.Sc., Interdisciplinary Subject: Human-Computer Dialogue Modes of learning and teaching: Seminar Psychology of Automation (Dr.-Ing. Nicola Fricke, Prof. Dr. Martin Baumann) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The students will have to continually participate, present a topic of the field orally and provide the presentation in written form. The exact form will be announced in the course. Additionally some exercises might be assigend. Requirements (formal): None Grading: The mark for the module is determined by an unweighted average of the marks for presentation, the written documents of the presentation and if assigned of the exercises. 112 Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 113 5.1.4 Transportation Human Factors Token / Number: 88csyneu German title: Transportation Human Factors Credits: 4 ECTS Semester hours: 2 Language: English and German Turn / Duration: Sporadic (Summer Term 2016) / 1 Semester Module authority: Prof. Dr. Martin Baumann Training staff: Prof. Dr. Martin Baumann Members of the Insitute of Psychology and Education, Dept. Human Factors Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive ergonomics Cognitive Systems, M.Sc., Interdisciplinary Subject Human-computer dialogue Requirements (contentual): None. Learning objectives: The students possess a deep knowledge about important theoretical concepts, methodological approaches and empirical findings in the area of transportation human factors. The are able to apply this knowledge to successfully analyze and solve practically relevant problems. Content: During the course the students will become acquainted with essential issues, methods and theoretical concepts of the domain of transportation human factors. These include methodological approaches in the analysis of driver behaviour, psychological foundations of driver behaviour, the effect of driver assistance systems on driver behaviour and current issues in the design of drivervehicle interaction. Literature: Will be announced at the beginning of the course Basis for: Cognitive Systems, M.Sc., Application Subject: Cognitive Ergonomics; Cognitive Systems, M.Sc., Interdisciplinary Subject: Human-Computer Dialogue Modes of learning and teaching: Seminar Transportation Human Factors (Prof. Dr. Martin Baumann or Members of the Institute of Psychology and Education, Dept. Human Factors) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The students will have to continually participate, present a topic of the field orally and provide the presentation in written form. The exact form will be announced in the course. Additionally some exercises might be assigend. Requirements (formal): None Grading: The mark for the module is determined by an unweighted average of the marks for presentation, the written documents of the presentation and if assigned of the exercises. Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 114 5.2 Cognitive Modelling 5.2.1 Cognitive Modelling for Computer Scientists and Psychologists Token / Number: 88csy71918 German title: Kognitive Modellierung für Informatiker und Psychologen Credits: 4 ECTS Semester hours: 2 Language: English Turn / Duration: Every Summer Term / 1 Semester Module authority: Jun.-Prof. Dr. Birte Glimm Training staff: Dr. Marvin Schiller Dr. Florian Schmitz Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive modelling Computer Science, B.Sc., Seminar, Computer Science, M.Sc., Seminar, Computer Science and Media, B.Sc., Seminar, Computer Science and Media, M.Sc., Seminar, Requirements (contentual): None Learning objectives: The participants learn to deal with a scientific topic in an autonomous manner. This includes surveying the relevant literature, identifying and evaluating the relevant information and presenting it both in the form of an oral presentation and a term paper. Thereby, the participants acquire skills to work the available material into a presentation, to give the presentation in front of an audience and to discuss questions pertaining to the topic, in addition to acquiring skills of scientific writing. In particular, the seminar aims to provide a differentiated overview of the various methods of cognitive modeling and their application. Content: Cognitive modeling is a central discipline at the intersection of cognitive science, psychology and computer science. This discipline uses formal, mathematical and computer models to investigate fundamental principles of cognitive processes and behavior. By comparing data generated by these models with empirical data, the adequacy of the models’ theoretical underpinnings can be tested. Furthermore, model-specific parameters can be used to provide a differentiated description of cognitive processes and help to better understand effects attributed to situational factors and individual differences. The seminar encompasses a range of methods used in cognitive modelling, cognitive architectures and the modeling of different cognitive sub-systems (memory, attention, emotion, attitude, decision making, logical reasoning). Furthermore, the use of these methods in different application areas will be discussed. Literature: - To be announced in the first class (together with the assignment of topics) Basis for: – Modes of learning and teaching: Seminar Cognitive Modeling (Dr. Marvin Schiller, Dr. Florian Schmitz) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h 115 Course assessment and exams: Continued participation in all classes; preparation of a term paper; giving an oral presentation Requirements (formal): None Grading: The module is ungraded. Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 116 5.2.2 Computational Psychology Token / Number: 88csyneu German title: Computational Psychology Credits: 4 ECTS Semester hours: 2 Language: English Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Dipl.-Ing. Thomas Frühwirth Training staff: Prof. Dr. Dipl.-Ing. Thomas Frühwirth Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive modelling Requirements (contentual): Basic knowledge of logic (and Prolog) are advantageous. Learning objectives: The participants learn to work on a scientific topic autonomously. This includes surveying the relevant literature, identifying and evaluating the relevant information and presenting it both in the form of an oral presentation and a term paper. Thereby, the participants acquire skills to work the available material into a presentation, to give the presentation in front of an audience and to discuss questions pertaining to the topic, in addition to acquiring skills of scientific writing. In particular, the students get an overview of the methods of (computational) cognitive modeling, applications and example models. Content: Computational Psychology is a research area at the interface of computer science and psychology. Psychological models of cognitive tasks like memory, vision or deduction are implemented, analyzed and simulated. The results of those simulations are compared to results from experimental psychology to achieve a better understanding of the cognitive processes. The seminar enables the students to get to know, analyze and evaluate new research approaches. It deepens the presentation skills of scientific contents by acquiration, written and oral presentation and discussion of selected literature: Starting from given literature, the students get to know their assigned topic, do a literature research, write a report, give a scientific talk and participate in the discussion of other talks. Topics are from the field of (computational) cognitive modeling and cover for instance cognitive architectures, interesting example models, problems with current approaches in the field, analysis of cognitive models and extensions of existing architectures. ILIAS: If sufficient demand exists. Literature: - Original literature from the field of cognitive science will be given together with the topics of the presentations. Basis for: Modes of learning and teaching: Seminar Computational Psychology (Prof. Dr. Thomas Frühwirth) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h 117 Course assessment and exams: Continued participation in all classes, written and oral presentation of a topic from the field of computational psychology, participation in discussions Requirements (formal): none Grading: The module is ungraded. Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 118 5.2.3 Project Cognitive Modelling Token / Number: 88csyneu German title: Project Cognitive Modelling Credits: 8 ECTS Semester hours: 4 Language: English Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Dipl.-Ing. Thomas Frühwirth Training staff: Prof. Dr. Dipl.-Ing. Thomas Frühwirth Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive modelling Requirements (contentual): Basic knowledge of Prolog or CHR are advantageous. Learning objectives: The knowledge from courses related to the topic is applied and deepened in a practical substantial project. The students are able to apply and connect methods from cognitive modelling and (logic/constraint/imperative) programming to solve a problem from the field of computational psychology. Content: Computational Psychology is a research area at the interface of computer science and psychology. Psychological models of cognitive tasks like memory, vision or deduction are implemented, analyzed and simulated. The results of those simulations are compared to results from experimental psychology to achieve a better understanding of the cognitive processes. The project deals with a popular production rule system used in cognitive sciences: ACT-R. It is the implementation of a rule-based theory of human cognition. There are numerous implementations of ACT-R and cognitive models using ACT-R that are accompanied by scientific papers and online documentations. With Constraint Handling Rules (CHR) there exists a powerful rule-based approach that also enables to implement ACT-R models. The benefit of using CHR in cognitive modelling is its clear semantics, its close relation to first order logic and theoretical results for analysis. There is a basic implementation of ACT-R in CHR that contains a compiler from ACT-R models to CHR rules. In the project, the students extend the existing implementation or implement example models in CHR. Literature: Basis for: Modes of learning and teaching: Project Cognitive Modelling (Prof. Dr. Thomas Frühwirth) Estimation of effort: Active Time: 90 h Preparation and Evaluation: 150 h Sum: 240 h 119 Course assessment and exams: Quality of implementation, active participation in meetings and discussions with supervisor (and possibly team members), written report (planning phase and final documentation) and oral presentation. The concrete criteria are announced at the beginning of the project. Requirements (formal): none Grading: The module is graded. Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 120 5.3 Cognitive Neuroscience - Experimental and Modeling Perspectives 5.3.1 Body and Mind: philosophisch–wissenschaftstheoretische Grundlagen der Cognitive and Neuro Sciences Token / Number: 88csyneu German title: Credits: 4 ECTS Semester hours: 2 Language: Deutsch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Jörg Wernecke Training staff: Prof. Dr. Jörg Wernecke Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): None Learning objectives: Erwerb von Wissen hinsichtlich der grundlegenden Modelle von Denken, Erkennen und Bewusstsein in einem interdisziplinären Kontext; Erwerb von analytischen Kompetenzen im Hinblick auf die Zuordnung von unterschiedlichen kognitiven Modellen und wissenschaftstheoretischen Positionen. Erwerb von Transferwissen zur Einordnung aktueller kognitiver Modelle im Hinblick auf deren wissenschaftstheoretische Implikationen und heuristischen Leistungsfähigkeit. Content: - Historisch–systematischer Überblick zum Leib-Seele-Problem, zu Bewusstseins– und Erkenntnistheorien (Materialismus, Panpsychismus, Dualismus, Identitẗstheorie usw.) - Erkenntnis– und wissenschaftstheoretische Grundlagen der Cognitive and Neuro Sciences (empiristischer versus phänomenologischer Zugang, kybernetischer, informationstheoretischer, biologischer, konstruktivistischer Zugang; linguistic und pragmatic turn; Reichweite von Modellierungen) - Aktuelle Modelle der Cognitive and Neuro Sciences und deren wissenschaftstheoretische Implikationen (interdisziplinr̈er Zugang: Informatik, Biologie, Psychologie, Philosophie) Literature: - Selected literature. More references to the literature will be given during the course. Ansgar Beckermann: Das Leib–Seele–Problem. Eine Einführung in die Philosophie des Geistes, Paderbron, 2011 Thomas Nagel: Geist und Kosmos, Frankfurt a.M. (5)2014 Albert Newen: Philosophie des Geistes. Eine Einfḧrung, München 2013 Alex Sutter: Göttliche Maschinen. Die Automaten fr̈ Lebendiges, Frankfurt a.M. 1988 Max Urchs: Maschine, Körper, Geist. Eine Einführung in die Kognitionswissenschaft, Frankfurt a.M. 2002 Basis for: Grundkenntnisse aktueller Modelle der Cognitive Science Modes of learning and teaching: Seminar Mind and Body (PD Dr. Jörg Wernecke) 121 Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: Individuelle Leistung — mündlich (Präsentation) oder schriftlich (Hausarbeit) Requirements (formal): None Grading: mündliche oder schriftliche Leistung wird benotet Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 122 5.3.2 Cognitive and Neural Systems Token / Number: 88csy??? English title: Cognitive and Neural Systems Credits: 6 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Sporadic (Winter Term) / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): Mathematical basics, core cognitive systems skills Learning objectives: The students are introduced to the mechanisms underlying the information processing in cognitive systems, with a focus on behavioral neurosciences and the general principles in modeling (professional competence). They are able to mathematically describe and model processes and experimentally qualified phenomena and to analyze such models using specific tools. For the modeling of dynamical, specifically non-linear, processes students acquire knowledge about numerical simulation methods. In addition, they are able to make use of methods for the mathematical analysis at different levels of abstraction (methodological expertise). The students are able to design and analyze models for complex cognitive systems, design new models, to simulate them and evaluate their results (transfer and evaluation competence). Content: - Literature: Basis for: Introduction - Modeling and concepts Mathematical tools Mathematical modeling of physical systems Numerical methods Linear dynamical systems - Dynamic behavior, transformations and control Neuron models - State dynamics and computation Circuits, networks, and systems Non-linear dynamical systems and control Models of learning and memory Examples of neural modeling cognitive mechanisms The following literature list defines a reference. Further hints to specific literature are given at the beginning of the course program: D.H. Ballard: An Introduction to Natural Computation. MIT Press, 1997 P.S. Churchland, T.J. Sejnowski: The Computational Brain. MIT Press, 1999 E.M. Izhikevich: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, 2005 S. Sastry: Nonlinear Systems - Analysis, Stability, and Control. Springer, 1999 H.R. Wilson: Spikes, Decisions, and Actions. Oxford Univ. Press, 1999/2005 – 123 Modes of learning and teaching: Lecture (2 SWS) (Prof. Heiko Neumann) Exercise (1 SWS) (Prof. Heiko Neumann) Estimation of effort: Active Time: (Vorlesung) 45 h Preparation and Evaluation: 135 h Sum: 180 h Course assessment and exams: The exams are oral or written depending on the number of participants. The exact modes are announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations in cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1545. Letzte Änderung am 16.06.2015 um 14:25 durch vpollex. 124 5.3.3 Project Psychophysical investigation of functions in perception, cognition and motor behavior Token / Number: 88csy??? English title: Project Psychophysical investigation of functions in perception, cognition and motor behavior Credits: 8 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. N.N. Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): Basic knowledge in psychophysical methodology, experiment design, and testing are a prerequisite. In addition, programming skills are mandatory in order to design and run an experiment with subjects involved. It is necessary that students have successfully passed the lecture on "Psychophysics" or a related course. Knowledge concerning different psychophysical software tools are beneficial. Learning objectives: The students are able to identify experimental variables and select proper methods to conduct experimental tests in a larger project (professional competence). They become acquainted in a practical experiment with basic methods, statistical tests, and evaluation techniques (methodological expertise). The students are able to design (including programming and fully executing software-based tests) and conduct experiments in various domains and evaluate and interpret the results of a larger study (transfer and evaluation competence). Content: Experimental psychophysical investigations will be conducted in the field of cognitive systems in general, with specific topics that focus on perception, higherlevel cognitive-behavioral tasks, and motor-related behavior. This project can be conducted in accordance with two different specifications: (i) It can be conducted as a joint project that is supervised by academic partners from different disciplines (topics and supervisors will be announced); (ii) alternatively, it can be conducted as a project at a specific industrial research lab or division of a company which focuses on interdisciplinary experimental work. Inquiries should be first sent to the module authority and then the potential options will be forwarded and further detailed. Potential partner labs will be announced such that students can start planning at the earliest convenience. Options for the industrial projects might be limited and subject to certain skill requirements. Literature: A list of basic material will be distributed at the beginning of the first project phase. Basis for: – Modes of learning and teaching: Project Project Psychophysical investigation of functions in perception, cognition and motor behavior () Estimation of effort: Active Time: 30 h Preparation and Evaluation: 210 h Sum: 240 h 125 Course assessment and exams: The successful participation and accomplishment of the project is demonstrated through active participation and regular report to the supervisors, a final oral presentation of the project work and results, and a written report. The report includes a documentation of the evaluation results and proper statistical testing. Requirements (formal): Bachelor Grading: The mark for the module is determined by the average of the mark given for the final written project report and the final oral project presentation. Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 126 5.3.4 Project and Seminar Visual Information Processing Token / Number: 88csyneu English title: Project and Seminar Visual Information Processing Credits: 8 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Semester / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Application Subject Cognitive Vision Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): Assumes basic knowledge regarding methods and principles in digital image processing or computational vision. Learning objectives: The students are capable to deal with scientific technical literature and apply scientific methodology for their studies. Students can search and analyze specific literature to present the core contents in a seminar presentation. These investigations serve as the basis for subsequent design and implementation of the computational mechanisms as described in the source references. They will finally test and present the key results of their model implementations. Content: A specific topic from the area of cognitive systems is selected and relevant core literature based on original scientific papers will be discussed. Students will present the contents and core themes in a seminar talk. Based on this presentation and literature study the content of such literature study will be specified, implemented and tested. A demonstration together with a final presentation completes the project part. A written report is finally delivered. Literature: The literature that is suited for the seminar and project will be selected in regard to the the selected topic. Basis for: Lectures from the core topic and specialization areas in Cognitive Systems should be attended to utilize a sound background for application and interdisciplinary work. Modes of learning and teaching: Project Seminar (2 SWS) (Prof. Heiko Neumann) This module combines seminar and project parts. The introductory part with literature study and preparation of scientific presentation defines the seminar. The subsequent specification of the algorithms, implementation and evaluation defines the project part. The details concerning the contents and the specific time table are presented to the attendees at the beginning of the semester. Estimation of effort: Active Time: 30 h Preparation and Evaluation: 210 h Sum: 240 h Course assessment and exams: The final mark will be determined through the initial seminar presentation, the final project presentation, and the project report. A minimum achievement for all three parts is mandatory. Requirements (formal): None 127 Grading: The mark for the module is determined by the average mark obtained for the seminar presentation, final project presentation and the project report. Each one of the three partial contributions is graded. The final mark is determined by the average of equally weighted grades. Basierend auf Rev. 1590. Letzte Änderung am 08.10.2015 um 13:07 durch mreichert. 128 5.3.5 Psychophysics - Methods, Paradigms, and Experimentation Token / Number: 88csy??? English title: Psychophysics - Methods, Paradigms, and Experimentation Credits: 4 ECTS Semester hours: 3 Language: Englisch Turn / Duration: Sporadic (Summer Term) / 1 Semester Module authority: Prof. Heiko Neumann Training staff: Prof. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): None Learning objectives: The students are introduced to the history and foundation of experimental techniques in behavioral neuroscience, namely (visual) psychophysics. They are able to identify experimental variables and experimental methods to conduct experimental tests (professional competence). In addition, they become acquainted with basic methods, statistical tests, and evaluation techniques (methodological expertise). The students are able to design and conduct experiments in various domains and evaluate and interpret the results (transfer and evaluation competence). Content: - Introduction - What is psychophysics? Detection thresholds, psychometric functions Example experiment Psychophysical procedures & signal detection Adaptive methods The MATLAB psychophysics toolbox Statistical analysis - Selected tests and methods Selected behavioral data acquisition methods Other psychophysics tools – PsychoPy, mobile psychophysics Exercises serve as a means for implementation and practical testing of the techniques and methods discussed in the lecture. Literature: The following literature list defines a reference. Further hints to specific literature are given at the beginning of the course program: - F.A.A. Kingdom, N. Prins: Psychophysics - A Practical Introduction. Academic Press, 2010 - D.A. Rosenbaum: MATLAB for Behavioral Scientists. Psychology Press, 2007 - E.B. Goldstein: Sensation and Perception. Thomson Publ., 2002 Basis for: – Modes of learning and teaching: Lecture (2 SWS) (Prof. Heiko Neumann) Exercise (1 SWS) (Georg Layher) Estimation of effort: Active Time: (Vorlesung) 45 h Preparation and Evaluation: 135 h Sum: 180 h 129 Course assessment and exams: The exams are oral or written depending on the number of participants. The exact modes are announced in the lecture. Requirements (formal): None Grading: The mark for the module is determined by the exam mark. A grade bonus according to §13 (5) of the study and exam regulations in cognitive systems is given if the exercise class is passed successfully. Basierend auf Rev. 1492. Letzte Änderung am 22.04.2015 um 13:21 durch vpollex. 130 5.3.6 Seminar Computational modeling of cognitive functions Token / Number: 88csy71951 German title: Seminar Modellierung kognitiver Funktionen Credits: 4 ECTS Semester hours: 2 Language: English Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Günther Palm Training staff: Prof. Dr. Günther Palm Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Modeling Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): None Learning objectives: The students are able to understand scientific literature in cognitive science and to grasp advanced ideas and methodical approaches. A critical discussion of the contents is presented in written form and in a scientific talk. Content: - Topics of cognition cognition cognition cognition cognition cognitive science, e.g.: and the brain and emotion and language and learning and problem solving. Literature: Original literature from the field of cognitive science will be given together with the topics of the presentations. Basis for: None Modes of learning and teaching: Seminar Computational modeling of cognitive functions, 2 SWS (Prof. Dr. Günther Palm) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: Written and oral presentation of a topic from the field of cognitive sciene Requirements (formal): None Grading: No mark is given for this modul. Basierend auf Rev. 1556. Letzte Änderung am 19.06.2015 um 16:35 durch hneumann. 131 5.3.7 Thinking about Science Token / Number: 88csyneu German title: Nachdenken über Wissenschaft Credits: 4 ECTS Semester hours: 2 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Hans–Peter Eckle Prof. Dr. Renate Breuninger Training staff: Prof. Dr. Hans–Peter Eckle Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): None Learning objectives: The students will acquire an understanding of the major debates in the meta– scientific disciplines: philosophy, history, ethics, and sociology of science. From these meta–scientific vantage points and in addition to the criteria of their scientific discipline, they will be able to develop critical and self–critical criteria to put into perspective their own work and developments in their science and in science in general. In particular, their awareness will be raised to the issues of “Good Scientific Practice", i.e. the ethical behaviour within science and how these issues arise in practice contexts. Content: - Philosophy: Why philosophy?, Philosophy in action - Philosophy of science: Why care? - History of science and of the thinking about science: From the ancients to the Scientific Revolution - History of science and of the thinking about science: From the Scientific Revolution to the present - Key issues in the philosophy, history, ethics, and sociology of science - Empiricism versus rationalism - Inductivism, deductivism, critical rationalism, paradigm theory, recent developments - Rules, norms, and values of science - Research ethics Literature: Selected literature. More references to the literature will be given during the course. - Kent W. Staley: An Introduction to the Philosophy of Science, Cambridge University Press, 2014 - Peter Godfrey–Smith: Theory and Reality — An Introduction to the Philosophy of Science, University of Chicago Press, 2003 - Robert Klee: Introduction to the Philosophy of Science — Cutting Nature at its Seams, Oxford University Press, 1997 Basis for: The module provides general perspectives of reflection on science which are useful to inform any scientific activity. 132 Modes of learning and teaching: Seminar Thinking about Science (Dr. Hans–Peter Eckle) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The exam is oral (in the form of a presentation) or written (in the form of a take home essay). Requirements (formal): None Grading: Presentation or essay will be graded. Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 133 5.3.8 Topics in Cognitive Neuroscience Token / Number: 88csy English title: Topics in Cognitive Neuroscience Credits: 4 ECTS Semester hours: 2 Language: Englisch Turn / Duration: Sporadic (Winter Term) / 1 Semester Module authority: Prof. Dr. Heiko Neumann Training staff: Prof. Dr. Heiko Neumann Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive Neuroscience Requirements (contentual): None, knowledge acquired from successful participation of a lecture in computational vision or related topic is advantageous. Learning objectives: The students acquire basic knowledge of scientific work and searching for and dealing with scientific literature (evaluation competencies). They are able to analyze specific literature and to develop strategies to search for additional literature from selected sources, extract the key messages, analyze them and evaluate them (evaluation and presentation competencies). The students practice scientific discourse and discussion of scientific content. Content: The seminar discusses a focus theme and basic literature is selected. Such literature will be presented in the beginning and the students select a particular topic. After the introductory reading phase in the seminar additional literature will be selected and studied subsequently (literature search). The students prepare and present their theme in a ’spotlight’. A summary document will be prepared and distributed among the other participants. A final extended seminar presentation is delivered, each of which will be discussed in the greater audience. The written summary papers serve as basis to prepare the discussion. Literature: A set of papers will be selected with reference to the specific thematic focus of the seminar. Basis for: – Modes of learning and teaching: Seminar Topics in Cognitive Neuroscience ( Prof. Dr. Heiko Neumann) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The final mark will be determined through the initial ’spotlight’ presentation, the final seminar presentation, and the seminar report. A minimum achievement for all three parts are are mandatory. Requirements (formal): None 134 Grading: The mark for the module is determined by the average mark obtained for the ’spotlight’ presentation, the final seminar presentation and the seminar report. The final mark is determined by the average of equally weighted grades given for each of the partial fulfillments. Basierend auf Rev. 1551. Letzte Änderung am 17.06.2015 um 09:07 durch vpollex. 135 5.4 Cognitive Agents, Companions, and Cognitive Apps 5.4.1 Cognitive Agents, Companions, and Mobile Apps in Healthcare Token / Number: 88csy English title: Cognitive Agents, Companions, and Mobile Apps in Healthcare Credits: 4 ECTS Semester hours: 2 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Manfred Reichert Training staff: Prof. Dr. Manfred Reichert Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive agents Requirements (contentual): None. Learning objectives: The students acquire basic knowledge in searching for and dealing with scientific literature (evaluation competencies). They are able to analyze specific literature as well as to develop strategies to search for additional literature from selected sources, extract the key messages, analyze the papers, and evaluate them (evaluation and presentation competencies). The students practice scientific discourse and discussion of scientific content. Content: The colloquium discusses sophisticated topics related to cognitive software applications. In particular, the focus is on cognitive agents, companions, and mobile apps in healthcare. At the beginning of the colloquium, basic literature will be presented and the students select a particular topic. After the introductory reading phase, additional literature will be selected and studied subsequently (literature search). The students prepare and present their theme in a ’spotlight’. A summary document will be prepared and distributed among the other participants. A final extended colloquium presentation is delivered, each of which will be discussed in the greater audience. The written summary papers serve as basis to prepare the discussion. Literature: A set of papers will be selected with reference to the specific thematic focus of the seminar. Basis for: – Modes of learning and teaching: Seminar Cognitive Agents, Companions, and Mobile Apps in Healthcare ( Prof. Dr. Manfred Reichert) Estimation of effort: Active Time: 30 h Preparation and Evaluation: 90 h Sum: 120 h Course assessment and exams: The final mark will be determined through the initial ’spotlight’ presentation, the final seminar presentation, and the seminar report. A minimum achievement for all three parts are mandatory. Requirements (formal): None 136 Grading: The mark for the module is determined by the average mark obtained for the ’spotlight’ presentation, the final seminar presentation, and the seminar report. The final mark is determined by the average of equally weighted grades given for each of the partial fulfillments. Basierend auf Rev. 1578. Letzte Änderung am 08.10.2015 um 08:48 durch mreichert. 137 5.4.2 Project Cognitive Solutions for Mobile Guidance, Assessment and Crowd Sensing Token / Number: 88csy??? English title: Project Cognitive Solutions for Mobile Guidance, Assessment and Crowd Sensing Credits: 8 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Winter Term / 1 Semester Module authority: Prof. Dr. Manfred Reichert Training staff: Prof. Dr. Manfred Reichert Prof. Dr. Iris Kolassa Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive agents Requirements (contentual): Learning objectives: The students are able to elicit the fundamental requirements of a cognitive agent, companion or app for a particular application scenario with a specific focus on mobile user guidance, mobile assessment and/or mobile data collection. The students can apply fundamental design principles for cognitive systems to properly develop an agent, companion or app that meets the requirements of the considered application scenario properly. Furthermore, they are able to demonstrate the practical benefit of this cognitive system as well as to discuss its strengths and limitations with domain experts. Content: Cognitive mobile agents, companions, and apps shall assist humans in both professional and private life. In practice, a wide range of use cases in various application domains (e.g. healthcare, logistics, sports) can be supported by such cognitive systems. In the project, the students will investigate a particular application scenario and elaborate alternative ways of enabling mobile user guidance, assessment and/or data collection for it. Furthermore, they will design proper user interfaces and interaction concepts for these alternatives and then implement a cognitive mobile agent, companion or app to demonstrate one of them in detail. Literature: A list of basic material will be distributed at the beginning of the first project phase. Basis for: – Modes of learning and teaching: Project Project Cognitive Solutions for Mobile Guidance, Assessment and Crowd Sensing () Estimation of effort: Active Time: 30 h Preparation and Evaluation: 210 h Sum: 240 h Course assessment and exams: The successful participation and accomplishment of the project is demonstrated through active participation and regular report to the supervisors, a final oral presentation of the project work and results, and a written report. The report includes a documentation of the evaluation results and proper statistical testing. 138 Requirements (formal): Bachelor Grading: The mark for the module is determined by the average of the mark given for the final written project report and the final oral project presentation. Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 139 5.4.3 Project Inreasing Patient Engagement through Cognitive Companions and Apps Token / Number: 88csy??? English title: Project Inreasing Patient Engagement through Cognitive Companions and Apps Credits: 8 ECTS Semester hours: 4 Language: Englisch Turn / Duration: Every Summer Term / 1 Semester Module authority: Prof. Dr. Manfred Reichert Training staff: Prof. Dr. Manfred Reichert Integration of module into courses of studies: Cognitive Systems, M.Sc., Interdisciplinary Subject Cognitive agents Requirements (contentual): Learning objectives: The students are able to elicit the requirements for cognitive companions, mobile health apps, and fitness tracking devices that increase the engagement of patients with their health and wellness. The students can further apply fundamental principles and concepts of cognitive systems in order to properly design and implement sophisticated user interfaces and interaction concepts that meet these requirements. They can demonstrate the practical use of the realized patient companion or mobile app, and are familiar with its opportunities and limitations in respect to patient engagement. Content: Cognitive companions, mobile health apps, and fitness tracking devices all play a role in ensuring that patients become engaged with their health and overall wellness. Whether it is to remain dedicated to manage one’s medications and prescriptions or to adhere to one’s diet and exercise routine, mobile health apps and technologies can be used to boost patient engagement with health and wellness. However, various challenges need to be tackled by providers to incorporate these apps and devices into the patients’ lifestyles. While patients are usually willing to use, for example, mobile health apps as a part of their healthcare, it is critical for developers to make these apps holistic and easy to use for the patients. By investigating a concrete healthcare or well-being scenario, the students will learn how to design mobile health apps and other Internet-based, remote technologies in a way that increases the engagement of patients with their healthcare and assists providers in meeting meaningful use objectives. Literature: A list of basic material will be distributed at the beginning of the first project phase. Basis for: Modes of learning and teaching: Project Project Inreasing Patient Engagement Through Cognitive Companions and Apps () Estimation of effort: Active Time: 30 h Preparation and Evaluation: 210 h Sum: 240 h 140 Course assessment and exams: The successful participation and accomplishment of the project is demonstrated through active participation and regular report to the supervisors, a final oral presentation of the project work and results, and a written report. The report includes a documentation of the evaluation results and proper statistical testing. Requirements (formal): Bachelor Grading: The mark for the module is determined by the average of the mark given for the final written project report and the final oral project presentation. Basierend auf Rev. 1639. Letzte Änderung am 12.10.2015 um 07:36 durch vpollex. 141 6 Final Thesis 6.1 Master’s Thesis Token / Number: 88csy80000 German title: Masterarbeit Credits: 30 ECTS Semester hours: 0 Language: English Turn / Duration: Every Semester / 1 Semester Module authority: Prof. Dr. Manfred Reichert (Studiendekan) Training staff: Primary supervisor of the thesis Integration of module into courses of studies: Cognitive Systems, M.Sc., Thesis Masterarbeit Requirements (contentual): Desired: specialized elective modules in the scientific area of the thesis Learning objectives: Acquisition and demonstration of the following competencies: - Independent treatment of complex problems, using the skills acquired in the Master’s program as well as established scientific methods and knowledge, within a pre-set time frame - Compilation of a thesis in compliance with the established principles of scientific writing - Presentation of scientific results in comprehensible form to an audience of peers, including scientific discussion - Gaining key competencies regarding project management, presentation skills and rhetoric skills Content: dependent on topic Literature: dependent on topic Basis for: – Modes of learning and teaching: Master’s Thesis Selection of a suitable topic at one of the institutes of the faculty, or exceptionally outside of the faculty (requires permission of the Examination Committee); research of scientific literature, design work and/or experimental work dependent on topic; consultation with the guiding assistants and the primary supervisor () Estimation of effort: Active Time: 10 h Preparation and Evaluation: 890 h Sum: 900 h Course assessment and exams: Written thesis and final presentation Requirements (formal): At least the modules of the foundation and core subjects have to be completed successfully. 142 Grading: Grading of results obtained, written thesis, and final presentations by two reviewers in accordance with rules and regulations Basierend auf Rev. 1575. Letzte Änderung am 08.10.2015 um 07:54 durch mreichert. 143
© Copyright 2026 Paperzz